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This paper characterizes how firms’ strategic interaction in product markets affects
the industry dynamics of investment and expected returns. In imperfectly competitive
industries, a firm’s exposure to systematic risk is affected by both its own investment
strategy and the investment strategies of its peers, so that the dynamics of its expected
returns depend on the intraindustry value spread. In the model and the data, firms’ betas
and returns correlate more positively in industries with low value spread, low dispersion in
operating markups, and low concentration. (JEL G12, G31)

In imperfectly competitive industries, the ability of firms to affect market
prices induces them to invest strategically. The value of each firm depends
not only on its own assets in place and investment opportunities but also on
the ability of its competitors to expand capacity and reduce market prices.
As a result, under imperfect competition, the dynamics of a firm’s exposure
to systematic risk is not only significantly explained by its own investment
strategy but is also explained by the investment strategies of its industry peers.

The study of firms’ intraindustry interactions is relevant in light of
the empirical evidence that suggests that commonly studied asset pricing
regularities are predominantly intraindustry (see, e.g., Cohen and Polk 1996;
Moskowitz and Grimblatt 1999; Cohen, Polk, and Vuolteenaho 2003). The
current production-based asset-pricing literature focuses on the impact of
corporate investment on expected returns in perfectly competitive or in
perfectly monopolistic industries (see, e.g., Berk, Green, and Naik 1999; Zhang
2005; Carlson, Fisher, and Giammarino 2004). We explore the intermediate
case of imperfectly competitive industries, in which firms’ strategic interaction
affects the dynamics of investment and risk. Our analysis rationalizes existing
findings on the cross-section of returns and provides additional testable
predictions for which we find supporting evidence in our empirical section.
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Our study is motivated by several research questions. How does a firm’s
relative position in its product market influence its investment decisions and
the conditional dynamics of its expected returns? In which types of industries
are the stylized predictions of investment-based asset pricers for monopolies
or perfectly competitive industries still appropriate? And how does strategic
interaction affect the intraindustry correlation of firms’ investments and their
exposure to systematic risk?

The core testable prediction of our model is that the dynamics of corporate
investment and expected returns depend critically on the intraindustry standard
deviation in market-to-book ratios, or intraindustry value spread. In industries
with low value spread, firms have more similar investment strategies, and their
betas and returns correlate more positively. In contrast, in industries with high
value spread, there are leaders and laggards whose investment strategies and
risk exposures are less correlated. Firms’ betas and returns may also correlate
more positively in industries with low standard deviation in markups and low
concentration.

We obtain this prediction in a partial equilibrium real-options model of
duopoly under imperfect competition, with heterogeneous firms in which
investment is irreversible and firms optimally decide when to invest. We
solve for the investment strategies of firms that differ in their production
technologies and have a single growth option to increase capacity. This departs
from several earlier dynamic models of imperfect competition that focus on
identical firms and therefore are silent about the intraindustry cross-section of
growth opportunities and risk (see, e.g., Grenadier 2002; Aguerrevere 2009).1

Given that the setting is fairly complex, we exert substantial effort to derive
firms’ investment strategies in equilibrium.

The paper makes three main contributions. First, we add to the literature
on corporate investment as we elaborate on the effect of firms’ strategic
interaction on their investment strategies. In neoclassical investment models,
the investment strategy of each firm solely depends on its own marginal
product of capital, or q (see, e.g., Hayashi 1982). In contrast, under imperfect
competition, the investment strategy of each firm depends on the marginal
product of capital of all firms in the industry. In our model, a firm’s q reflects
its comparative advantage in increasing its market share relative to its peer.
As a result, the investment strategy of each firm depends on the intraindustry
dispersion in q, or its empirical counterpart, the intraindustry value spread.

In our duopoly model, two mutually exclusive types of Markov perfect
equilibria arise, depending on the cross-sectional differences in firms’
production technologies and on the intraindustry value spread.2 In industries
with more distant competitors and high value spread, the firm with highq invests

1 A relevant exception is the model by Carlson et al. (2014), on which we elaborate below.

2 To obtain mutually exclusive equilibria, we consider a Pareto dominance refinement. See Section 1.
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earlier than does its competitor. In this leader-follower equilibrium, the firm
with high q may invest more aggressively and thus accelerate its investment
relative to its first-best strategy to secure its position as a leader. As a result, the
firm with high q bears a nonnegative shadow cost of preemption. In industries
with closer competitors and low value spread, firms invest simultaneously in
equilibrium. In this clustering equilibrium, both firms delay their investments
relative to their strategy as either a leader or a follower and invest at a threshold
that is strictly higher than the optimal follower threshold of the firm with low
q. As a result, firms strategically delay their investments in industries with low
value spread.3

As a second contribution, the model characterizes how firms’ strategic
behavior affects the intraindustry cross-section of expected returns. We find
that firms’ strategic interaction affects the intraindustry cross-section of
betas beyond the given cross-sectional heterogeneity in firms’ production
technologies. In industries with leaders and followers, preemption amplifies the
intraindustry cross-sectional differences in betas. The equilibrium intraindustry
spread in betas is weakly higher than the spread in betas of an industry in
which the firm with high q would invest earlier by assumption. Conversely, in
industries with closer competitors, it is Pareto optimal for both firms to invest
jointly at a higher threshold relative to their corresponding leader-follower
strategies. Such strategic delay in firms’ investment decisions dampens the
intraindustry cross-section in betas.

The final contribution of the paper is to provide testable implications and
supporting empirical evidence on the effect of firms’ strategic interaction on
the intraindustry dynamics of expected returns. In our model, firms’ strategic
interaction significantly affects the intraindustry correlation of their expected
returns, even when all firms in the industry are subject to no idiosyncratic
shocks and there is a single source of systematic risk. In industries with low
value spread, firms’ investments cluster, and their expected returns correlate
positively over time. Conversely, in industries with high value spread, the betas
of leaders and laggards correlate negatively: when leaders are about to invest
and their expected returns are high, laggards are about to lose market share and
their expected returns are low.

To test our predictions on industry dynamics, we construct a measure
of comovement that captures the average pairwise correlation in firms’
investments, betas, and returns by industry. Consistent with the model, we
report that firms’ betas and returns correlate more positively in industries with
low value spread. The model also predicts that firms’ returns and betas comove
more positively in industries with a low Herfindahl-Hirshman index (HHI) of
concentration and a low spread in markups, if the HHI and the intraindustry
spread in markups are positively correlated with the intraindustry value spread.

3 This is consistent with the clustering equilibrium with strategic delay discussed by Weeds (2002).
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In our empirical tests, we report that those industries with low value spread
usually have lower standard deviation in markups and lower concentration as
measured by the HHI. We also find more positive comovement in firms’ betas
and returns in industries with low HHI and low dispersion in markups.

The model relates closely to the symmetric duopoly model of investment
timing by Weeds (2002) and the asymmetric duopoly models of Pawlina and
Kort (2006) and Mason and Weeds (2010).4 We depart from the studies of
Pawlina and Kort (2006) and Mason and Weeds (2010) as we use an alternative
solution approach based on a sorting condition and incentive compatibility
constraints. The use of a sorting condition in a dynamic game of oligopoly
relates to Maskin and Tirole (1988). The Lagrange multiplier on the binding
incentive compatibility constraint of the firm with low q captures the shadow
cost of preemption on the value of its peer.

Consistent with Pawlina and Kort (2006) and Mason and Weeds (2010),
we obtain a leader-follower equilibrium, in which the firm with the better
technology may invest more aggressively in equilibrium to secure its position
as a leader. We contribute to Pawlina and Kort (2006) in extending the analysis
of clustering equilibria by Weeds (2002) to the case of an asymmetric duopoly.
Consistent with Weeds (2002), we predict multiple clustering equilibria and
apply a Pareto-dominance refinement to focus on the Pareto optimal case, in
which firms invest simultaneously at the first-best strategy of the firm with the
high q. The joint-investment equilibrium discussed by Pawlina and Kort (2006)
coincides with the Pareto optimal clustering equilibrium in our paper.

The implications on industry risk dynamics relate to Carlson et al. (2014),
who build on Pawlina and Kort (2006) and study the effect of firms’ strategic
behavior on the dynamics of expected returns. We depart from Carlson et al.
(2014) as we characterize the effects of preemption and strategic delay on
the intraindustry cross-section of betas. We also show that the unobservable
differences in firms’ production technologies (which effectively drive their
strategic behavior) translate into observable differences in market-to-book
ratios. This allows us to formulate testable implications of how firms’ strategic
behavior affects the intraindustry dynamics of returns, for which we find
empirical support.

Last, the paper relates to empirical studies highlighting the relevance of
intraindustry variation in explaining return predictability and the cross-section
of returns. Cohen, Polk, and Vuolteenaho (2003) document that the value spread
of U.S. firms is predominantly intraindustry. In our model, a firm’s market-to-
book ratio captures its ability to increase its market share. This suggests that the
market-to-book sorts by Fama and French (1992) aggregate stocks according
to firms’ relative position in their own industry. The model rationalizes the
empirical evidence of Hoberg and Phillips (2010). Hoberg and Phillips (2010)

4 Other related models of duopoly include those of Fudenberg and Tirole (1985), Grenadier (1996), Boyer et al.
(2001), and Lambrecht and Perraudin (2003).
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find that less concentrated industries have more predictable average industry
returns, so that periods of high market-to-book ratios, high investment, high
returns, and high betas are followed by periods of lower market-to-book ratios,
lower investment, lower returns, and lower betas.

1. Basic Model

We begin by studying a tractable model of duopoly to characterize the effect
of firms’ strategic interaction on their risk exposure in the most simple way. In
the following section, we elaborate on alternative specifications of the model
and derive testable implications.

1.1 Main assumptions
We consider an industry with two firms j =L,M , in which each firm has assets in
place and a single growth option to increase its capacity. Each firm is all-equity
financed and run by a manager who is the single shareholder.

Firms compete in capacity and produce a homogeneous good that they sell
in the market at a price pt . Firms operate at full capacity at any point in time.
The demand function requires that the product market price pt equals

pt =XtY
− 1

ε
t , (1)

where ε>1 is the elasticity of demand, Xt is a systematic multiplicative shock,
and the industry output Yt is the sum of the production at time t .

The demand shock Xt follows a geometric Brownian motion with drift μx

and volatility σx so that

dXt =μxXtdt +σxXtdzt , (2)

where zt is a standard Wiener process, and X0 is strictly positive. We further
assume that X0 is sufficiently low so that the growth options of all firms in the
industry are strictly positive at t =0. Throughout the paper, we denote by μyt

and σyt the mean and standard deviation of any variable y at time t , and we
omit the subscript t when μy or σy are constant over time.

We assume that both firms have the same initial installed capacity K . Firms
can also invest at any time to increase their installed capacity to �jK , where
�j >1. Without loss of generality, we denote firm L as the firm with the more
productive investment opportunity so that �L >�M . We further set the output
of each firm to be equal to its installed capacity, so that the total production Yt

in Equation (1) is the sum of the installed capacity of both firms at any point
in time.5

5 Total production equals Yt =2K if no firm has invested, Yt =
(
1+�j

)
K if only firm j has invested, and Yt =

(�L +�F )K if both firms have invested.
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Managers maximize shareholder value by determining the critical value xj

for the stochastic demand shock Xt , at which point each firm exercises its
growth option. All parameter values and actions are common knowledge, so
the game is one of complete information.

The decision to invest is irreversible and entails benefits and costs. In our
setting, the irreversibility of investment implies a commitment by firms not
to adjust their capacity upon a reduction in market prices. Upon investment,
firms benefit from an increase in the scale of their profits by �j . They also
incur a fixed cost f K . For the sake of tractability, we do not consider variable
costs of investment, and we assume that firms face no variable costs of
production.

Given our assumptions, we denote the instantaneous profits of firm j before
its own investment by π−

j t ≡p−
t K , where the superscript − denotes the cash

flows before investment. Similarly, we denote the instantaneous profits of firm
j after its own investment by π+

j t ≡p+
t �jK , where the superscript + denotes

the cash flows after investment.

1.2 Firm value
The value of firm j at time t or Vjt equals the expected present value of its
risky profits. Following Carlson, Fisher, and Giammarino (2004), we assume
that demand shocks are perfectly hedgeable and determine the value of the
firm using a replicating portfolio with weights on a risk-free and a risky
asset.

We let Bt denote the price of a riskless bond with dynamics dBt = rBtdt ,
and we let St be a risky asset with dynamics dSt =μsStdt +σxStdzt . The risky
asset St has a drift μs −μx ≡δ>0, and we assume that the returns on St are
perfectly correlated with percentage changes in demand shocks. We use the
traded assets Bt and St to define a risk-neutral measure, under which the demand
shock Xt follows a geometric Brownian motion with drift r−δ and volatility
σx .6

In our model, firms sell their products at the common market price pt . At
any point in time, the market price pt at which each firm sells its production
depends on the capacity decisions of its competitor. Whenever the competitor
of firm j invests, the market price pt goes down, and the current and
expected future profits of firm j are also lower. We denote by �π−

j t the
expected change in instantaneous profits of firm j due to an investment by
its competitor before firm j invests. We denote by �π+

j t the expected change
in instantaneous profits of firm j due to an investment by its competitor after
firm j invests.

6 The dynamics of the demand shock under the risk-neutral measure are dXt =(r−δ)Xt +σxXt dẑt , where ẑt =
zt + μs−r

σx
t .
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Using standard techniques, we prove in Appendix A that the value of firm j

at time t for any investment strategy xj is given by

Vjt =

⎧⎪⎨⎪⎩
π−

j t

δ
+
(

Xt
xj

)υ
(

π+
j

δ
− π−

j

δ
−f K

)
+

�π−
j t

δ
+
(

Xt
xj

)υ
(

�π+
j

δ

)∣∣∣∣
Xt =xj

if Xt ≤xj

π+
j t

δ
+

�π+
j t

δ
if Xt >xj

,

(3)

where υ >1 is defined in Appendix A.
Equation (3) shows that under imperfect competition the preinvestment value

of firm j when Xt ≤xj is a function of its own investment strategy and the
investment strategy of its competitor. The first and second terms reflect that the
value of firm j depends on its own strategy xj . The first term corresponds to the
value of a growing perpetuity of cash flows generated by its assets in place. The
second term corresponds to the value of its investment opportunities or growth
options. The third and fourth terms reflect the impact of the investment strategy
of the competitor of firm j on Vjt . The investment strategy of the competitor of
firm j affects Vjt negatively through the expected reductions in future profits
�π−

j t and �π+
j t .

1.3 Equilibrium investment dynamics
1.3.1 Equilibrium concept. The equilibrium concept is Bayes-Nash. The
state of the industry is described by the history of the stochastic demands
shocks Xt . At any point in time, a history is the collection of realizations of the
stochastic processXs , s ≤ t , and the actions taken by all firms in the industry. The
investment strategy maps the set of histories of the industry into the action xj for
each firm j . Before investment, firm j responds immediately to its competitor’s
investment decision. This yields Nash equilibria in state-dependent strategies
of the closed-loop type.7 Upon investment, firm j cannot take any other action.

We follow Weeds (2002) and assume that firms follows Markov strategies,
so that their actions are a function of the state Xt and of whether or not
their rival has invested. As discussed by Weeds (2002), other non-Markov
strategies may also exist; however, if one firm follows a Markov strategy, the
best response of the other firm is also Markov. We consider the set of subgame-
perfect equilibria, in which each firm’s investment strategy, conditional on its
competitor’s strategy, is value maximizing. A set of strategies that satisfies
this condition is Markov perfect. The initial demand shock X0 is sufficiently
low to focus on equilibria in pure strategies.8 Subgame perfection requires

7 A closed-loop equilibrium is a Nash equilibrium in state-dependent strategies. See Fudenberg and Tirole (1991),
Weeds (2002), and Back and Paulsen (2009) for related discussions on closed-loop strategies.

8 When firms are identical, the equilibrium may involve mixed strategies whose formulation is complicated by the
continuous-time nature of the game, as noted by Fudenberg and Tirole (1985) and Weeds (2002). When firms
have different production technologies, Mason and Weeds (2010) show that a sufficient condition to avoid these
concerns is to assume that X0 is sufficiently low. Xo is assumed strictly lower than the lowest optimal investment
threshold in the industry xs

L
. We define xs

L
in Proposition 2.
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that each firm’s strategy maximizes its value conditional on its competitor’s
strategy.

1.3.2 Equilibrium outcome. We obtain two types of subgame-perfect
equilibria in pure strategies: a leader-follower equilibrium and multiple
clustering equilibria. We denote by xs

j the investment threshold of firm j in
the leader-follower equilibrium, in which firms invest sequentially. We denote
by xc the investment threshold of any firm j in a given clustering equilibrium,
in which firms invest simultaneously. We define xc∗

L as the optimal clustering
equilibrium for firm L. The standard deviation of firms’ scale of production
after investment is given by σ� ≡ |�L−�M |

2 .

Proposition 1 (Equilibrium investment dynamics). The subgame-perfect
industry equilibria for N =2 with �L >�M are such that

• if σ� ≥	�, firm L invests earlier than firm M so that xs
L <xs

M , and
• if σ� <	�, the Pareto optimal equilibrium is so that both firms invest

jointly at the threshold xc ≡xc∗
L ,

where 	� is determined endogenously in equilibrium.

Proof. See Appendix B. �

Proposition 1 states that the investment dynamics of any industry depend on
the cross-sectional differences in firms’ production technologies. When firms
are distant competitors so that σ� ≥	�, a leader-follower equilibrium arises,
in which firm L invests first. The dynamics of firms’ values are affected by
their strategic interaction so that �πs+

Lt <0 and �πs−
Mt <0. By construction, it

also holds that �πs−
Lt =0 and �πs+

Mt =0.
When firms are close competitors so that σ� <	�, the Pareto optimal

clustering equilibrium obtains at xc ≡xc∗
L . As we elaborate below, the model

admits alternative clustering equilibria that are suboptimal for both firms. In
any of the clustering equilibria of the model, there are no expected reductions
in profits so that �πc−

j t =0, �πc+
j t =0, and the expressions for firms’ values

resemble those of monopolistic firms in the real options literature.

1.3.3 Equilibrium strategies. We solve for the equilibrium outcome using
a sorting condition and incentive compatibility constraints. This solution
approach is heavily used in the literature of mechanism design. As discussed
in Chapter 13 of Fudenberg and Tirole (1991), it can also be applied to games
of strategic interaction.

The leader-follower equilibrium is so that firm L invests first and firm M

follows. There exists no alternative equilibrium in which firm M leads, because
firm L has the comparative advantage to become a leader. We provide a formal
derivation of this argument in Appendix B.
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The comparative advantage of firm L to invest as a leader relates to the
sorting condition of the game. The sorting condition ranks firms according to
their ability to invest earlier than their peers. We prove in Appendix B that if
firms differ in their future scale of production �j , those firms with a larger scale
upon investment �j find it less costly to invest earlier than their competitors
so that

∂

∂�j

[
∂Vjt

∂xj

]
<0, (4)

where the sorting condition in Equation (4) applies to any possible investment
strategy xj .

We derive the leader-follower equilibrium strategies by considering firms’
incentives to preempt each other. While the sorting condition in Equation (4)
states that firm L is better able to lead, firm M may still want to invest earlier
than firm L as if it had a better growth opportunity. Firm M has incentives to
invest earlier than firm L if its value as a leader is higher than its value as a
follower.

We denote by V s∗
j the value of firm j in a Stackelberg game in which firm L

invests earlier than firm M by assumption; xs∗
j is the investment threshold of

firm j in a such game. We denote by Ṽ s∗
M the value of firm M when it deviates

from its own strategy and pursues instead a strategy as a Stackelberg leader.
Firm M has incentives to preempt firm L whenever

Ṽ ∗
M

∣∣
Xt =x∗s

L
≥ V s∗

M

∣∣
Xt =xs∗

L
, (5)

where the inequality in Equation (5) provides an upper bound σ� so that firm
M has no incentives to become a leader if σ� >σ�.

We solve for firms’ investment strategies in equilibrium by backward
induction. Using standard techniques, we first derive the optimal strategy that
maximizes the value of firm M , assuming that firm L has already invested.
We then focus on the optimal strategy of firm L. Firm L becomes a leader in
equilibrium if and only if firm M is at most indifferent between choosing its
own strategy as a follower or pursuing a leader’s strategy.

We solve for the optimal investment strategy that maximizes the value of firm
L as a leader subject to the incentive compatibility constraint (ICC) of firm M .
The complementary slackness condition of the ICC of firm M is given by

λs
[
Ṽ s

M −V s
M

]∣∣∣
Xt =xs

L

=0, (6)

where the multiplier λs ≥0 in Equation (6) relates to Posner (1975) and
measures to which extent the contest for monopoly power between firms L

and M hinders the value of firm L. Ṽ s
M denotes the value of firm M when it

deviates from its strategy as a follower and invests instead at the threshold xs
L.

When the ICC of firm M is binding so that λs >0, the second factor in Equation
(6) equals zero, and firm M is indifferent between investing as a leader or as a
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follower. When the ICC of firm M is not binding so that λs =0, firm M strictly
prefers to stay as a follower.

Proposition 2 (Leader-follower equilibrium strategies). The subgame-
perfect strategies for N =2 with �L >�M , in which xs

L <xs
M are so that the

investment threshold of firm L equals

xs
L =

f K
1
ε (1−λs) υδ

υ−1[
(�L +1)−

1
ε �L−2− 1

ε

]
−λs

[
(�M +1)−

1
ε �M −(�L +1)−

1
ε

] , (7)

and the investment threshold of firm M equals

xs
M =

f K
1
ε

δυ
υ−1

(�L +�M )−
1
ε �M −(�L +1)−

1
ε

, (8)

where λs =0 if σ� >σ�, and λs ∈ (0,1) if σ� <σ�.

Proof. See Appendix B. �
Proposition 2 characterizes the leader-follower equilibrium strategies. We

obtain two different types of leader-follower equilibria, depending on the
strength of the preemptive motives of firm M . When σ� >σ�, firm L invests
at the Stackelberg threshold xs∗

L so that xs∗
L ≡xs

L (λs =0).
Conversely, when σ� <σ�, the investment strategy of firm L is significantly

affected by the preemptive motives of firm M (λs >0). To deter firm M , firm L

invests earlier as if it had a better growth opportunity. In Appendix B, we prove
formally that xs

L <xs∗
L if λs >0, so that preemption erodes the option value of

waiting to invest for firm L. We also prove that λs ∈ (0,1) if σ� <σ�.
The upper charts of Figure 1 illustrate the leader-follower equilibrium

strategies as a function of σ�. The multiplier λs captures the shadow cost
of preemption for firm L, and it is decreasing in σ�. When firms are more
distant competitors, the wedge between the equilibrium threshold xs

L and the
Stackelberg threshold xs∗

L decreases. It is less costly for firm L to lead if firm
M is a weaker competitor.

Figure 2 illustrates how strategic interaction affects the dynamics of firms’
values in the leader-follower equilibrium through the expected reductions in
profits �πs−

Mt <0 and �πs+
Lt <0. The value of each firm goes above the value of

its assets in place when its own growth option is in the money, and yet it goes
below the value of its assets in place when its competitor is about to invest.
This second effect is a result of firms’ strategic interaction.

The model admits multiple clustering equilibria, in which firms invest at
a common investment threshold xc. We highlight three main aspects of the
clustering equilibria of the game and leave the details to Appendix B.

First, for a clustering equilibrium to occur, the value of firm L associated with
being a leader must be lower than its value under the alternative joint-investment
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Figure 1
Investment strategies as a function of σ�
In panel A, the solid line relates to the leader equilibrium strategies xs

L
. The dashed line corresponds to the

Stackelberg strategy xs∗
j

, in which firm L leads by assumption. λs is the shadow cost of preemption in the leader-

follower equilibrium. In panel B, the solid line relates to the Pareto optimal clustering equilibrium strategy xc∗
L

.

The dashed line corresponds to the minimum clustering equilibrium threshold xc
L

. For the sake of comparison,
the dotted line depicts the follower threshold in the leader-follower equilibrium xs

M
<xc. The dash-dotted line

represents the first-best joint-investment threshold of firm M , or xc∗
M

>xc .

strategy so that V s
Lt ≤V c

Lt for any Xt . Otherwise, firm L would invest at the
lower investment threshold xs

L. Moreover, firm M’s follower threshold must
be lower than the clustering threshold xc. Otherwise, firm M would invest as
a follower at xs

M . As we show in Appendix B, the model is so that whenever
it is optimal for firm L to invest simultaneously, firm M’s follower threshold
xs

M is strictly lower than the clustering threshold xc. Hence, both firms have
incentives to invest simultaneously at xc as long as V s

Lt ≤V c
Lt .

Second, the Pareto optimal clustering equilibrium for both firms is to invest at
xc∗

L , and there exists no alternative clustering equilibrium threshold higher than
xc∗

L so that xc ≤xc∗
L . Given the asymmetry in firms’ production technologies,

the joint investment threshold at which firm M would maximize its value under
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Figure 2
Strategic interaction and firm values
This figure illustrates how strategic interaction affects firms’values in the leader-follower equilibrium. The value
of each firm consists of its assets in place, its growth option, and the expected reduction in profits due to the
investment of the rival firm.
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joint investment xc∗
M is strictly higher than xc∗

L so that xc∗
M >xc∗

L . This might lead
to the conjecture that firms may invest jointly at a threshold xc > xc∗

L . However,
at xc∗

L it is a dominant strategy for firm L to invest even though its rival will
follow at once, and firm M invests instantaneously at xc∗

L .
Last, there exist alternative clustering equilibrium thresholds xc <xc∗

L , in
which both firms attain a lower value than under the alternative strategy xc∗

L .
To characterize such clustering equilibria, we follow Weeds (2002) and define
xc

L as the lowest joint-investment threshold so that firm L has no unilateral
incentive to deviate. Formally, the threshold xc

L is given by

xc
L =inf {xc ∈ (0,xc∗

L ] :V s
Lt ≤V c

Lt∀xc ∈ (0,xc∗
L ]}, (9)

where V c
Lt is the preinvestment value of firm L when both firms invest jointly,

but not necessarily optimally, at a given threshold xc.
In sum, the derivation of the clustering equilibria relies on the premise that a

joint investment strategy xc is sustainable as long as V s
Lt ≤V c

Lt . Moreover,
because V s

Lt ≤V c
Lt implies xs∗

M <xc, the weaker competitor firm M acts as
if it were a follower; firm M invests instantaneously if firm L exercises its
own growth option. If V s

Lt never exceeds V c
Lt , we predict a range of multiple

clustering equilibrium thresholds xc ∈ [xc
L,xc∗

L ]. The value of both firms under
joint investment is the highest under the clustering strategy xc∗

L .

Proposition 3 (Clustering equilibrium strategies). The subgame-perfect
clustering equilibria for N =2 with �L >�M are so that both firms invest at
the same threshold xc ∈ [xc

L,xc∗
L ]. While there is a continuum of equilibrium

thresholds over this interval, the Pareto optimal equilibrium threshold xc∗
L is

given by

xc∗
L =

f K
1
ε

δυ
υ−1

(�L +�M )−
1
ε �L−2− 1

ε

. (10)

Proof. See Appendix B. �
Figure 1 illustrates the clustering equilibrium thresholds of the model as

defined in Proposition 3. The bottom left chart of Figure 1 depicts the range
of clustering equilibria of the model as a function of σ�. When firms are very
close competitors, the minimum clustering equilibrium threshold xc

L is slightly
above the equilibrium follower’s threshold xs

M ; the distance between xc
L and

xs
M widens for higher levels of σ�. As σ� increases and firm L becomes a

relatively stronger competitor, the set of multiple clustering equilibria shrinks
until the only feasible clustering equilibrium is the Pareto optimal equilibrium
threshold xc∗

L .
The bottom-right chart of Figure 1 compares the Pareto optimal equilibrium

threshold xc∗
L with the off-equilibrium threshold xc∗

M . By inspection, firm M

follows a suboptimal strategy relative to its first-best joint-investment threshold
xc∗

M . In a related model of symmetric oligopoly, Grenadier (2002) predicts that
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competition erodes the option value of waiting of all firms evenly. The wedge
between xc∗

L and xc∗
M illustrated in Figure 1 adds to Grenadier (2002) as it implies

that in an asymmetric duopoly firms’ strategic interaction more severely erodes
the value of the firm with the less profitable technology.

Fudenberg and Tirole (1985) argue that if one equilibrium Pareto dominates
all others, it is the most reasonable outcome to expect. We apply an equilibrium
refinement to select the Pareto optimal clustering equilibrium as the joint-
investment equilibrium of the model, and derive testable implications on
industry dynamics in the next section.

Assumption 1 (Pareto dominance refinement). Given V s
jt ≤V c∗

j t for j =
L,M , firm L rationally opts for the Pareto optimal clustering equilibrium
strategy xc∗

L .

Assumption 1 arises naturally in our setting because firm L has the real
option to become the industry leader. Given assumption 1, the clustering
equilibrium outcome depends on the relative magnitudes of the value of firm L

as a leader and the value of firm L when both firms delay their investment
until the Pareto optimal clustering threshold xc∗

L . If V s
Lt ever exceeds V c∗

Lt ,
preemption incentives are too strong for clustering to be an equilibrium, and
the only possible outcome is the leader-follower equilibrium. Conversely, if
V s

Lt never exceeds V c∗
Lt , a clustering equilibrium may be sustained, although

the leader-follower equilibrium outcome is also an equilibrium.
Relying on assumption 1, we derive a cutoff parameter σ� =	� so that firm

L is indifferent between pursuing its strategy as a leader and pursuing the Pareto
optimal joint-investment strategy xc∗

L . Firm L is indifferent between pursuing
the strategies xs

L and xc at the cutoff point σ� =	� so that

V s
Lt

∣∣
Xt =xs∗

L
= V c∗

Lt

∣∣
Xt =xs∗

L
, (11)

where V c∗
Lt is the value of firm L under the clustering equilibrium strategy xc∗

L .
The rationale to compare the value of firm L under the alternative investment
strategies at the threshold xs∗

L follows from Fudenberg and Tirole (1985). Given
Xt =xs∗

L , V s
Lt and V c∗

Lt are equal and tangent to each other at a unique σ� =	�.

Put together, assumption 1 and the cutoff parameter σ� =	� serve a dual
purpose. First, we eliminate any clustering equilibria in which both firms invest
jointly at a threshold lower than xc∗

L , which is suboptimal for both firms. Second,
we predict that firms optimally cluster in equilibrium if they are sufficiently
close competitors so that σ� <	�.

Given assumption 1, panel A in Figure 3 illustrates the equilibrium outcome
of the basic model as a function of σ�. The clustering equilibrium is sustainable
for lower values of σ�, whereas the leader-follower equilibrium emerges
otherwise. Panel B in Figure 3 illustrates the impact of the elasticity of demand
ε and the volatility of the demand shocks σx in determining the equilibrium
outcome. If firms are close competitors and operate in industries in which either
ε or σx are sufficiently low, it is optimal for firms to invest jointly in equilibrium.
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Figure 3
Equilibrium strategies given σ�, the elasticity of demand ε, and the volatility of demand shocks σx

This figure illustrates the equilibrium investment strategies for different parameter values, given the Pareto-
dominance refinement in assumption 1. xs

L
denotes the leader-follower equilibrium threshold of firm L, and xs∗

L
is the investment strategy of firm L in a game in which firm L leads by assumption. λs is the shadow cost of
preemption in the leader-follower equilibrium. xc denotes the clustering equilibrium threshold; xc∗

L
is the Pareto

optimal clustering strategy.
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1.4 Expected returns
We study the asset pricing implications of the basic model by analyzing firms’
exposure to systematic risk or betas. We define the beta of firm j at time t or
βjt as the covariance of the expected return of firm j with the single source
of systematic risk or market portfolio, divided by the variance of the market
portfolio.

Given that firms are subject to a single source of systematic risk, the
conditional CAPM holds. The riskless rate of return r is exogenously specified,
and the market price of risk is constant and exogenously given. In Section 3,
we address the fundamental concern that firms’ betas are a poor measure of
their exposure to systematic risk by testing our asset pricing predictions on
both firms’ betas and returns.

As in Carlson, Fisher, and Giammarino (2004), we infer expected returns
from a replicating portfolio composed of a risk-free asset and a risky asset that
exactly reproduce the dynamics of firm value. We show formally in Appendix
C that the proportion of the risky asset held in such a replicating portfolio is
equal to βjt . For any strategy xj , the beta of firm j at time t is given by

βjt =1+It (υ−1)

[
1− 1

δ

πjt

Vjt

]
, (12)

where It is an indicator function that equals zero if all firms have invested at
time t , and equals one otherwise.

The identity in Equation (12) for firms’ betas under imperfect competition
provides two important insights. First, a firm’s exposure to systematic risk
depends on the relative contribution of its own growth opportunities to total
firm value. Second, a firm’s exposure to systematic risk also depends on the
growth opportunities of its industry peers. Whenever a firm invests, the total
industry capacity increases, the market price pt goes down, and the earnings-
to-price ratios of all firms in the industry are affected. This explains why the
indicator function It in Equation (12) equals zero only when all firms in the
industry have invested.

1.5 Industry risk dynamics
We use the identity in Equation (12) and Propositions 1–3 to obtain time-series
and cross-sectional implications on the impact of firms’ strategic interaction
on their exposure to systematic risk. The time-series implications relate to
the impact of the expected reductions in profits �π−

j t ≤0 and �π+
j t ≤0 on

the dynamics of βjt . The equilibrium dynamics of firms’ betas depend on the
intraindustry heterogeneity captured by σ�.

Proposition 4 (Intraindustry correlation of betas). Given Xt <xs
M and the

refinement in assumption 1, the equilibrium dynamics of βjt depend on σ� so
that

• if σ� <	�, firms’ betas correlate positively, and
• if σ� ≥	�, the betas of leaders and followers correlate negatively.
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Proof. See Appendix C. �
When firms are distant competitors so that σ� >	�, the industry has leaders

and followers, and firms’ strategic interaction affects the dynamics of firms’
betas in equilibrium. When one firm in the industry expects to increase its
market share, the other expects a reduction in its own. Consequently, firms’
betas correlate negatively over time. This result is consistent with the study
by Carlson et al. (2014). We illustrate the dynamics of firms’ betas in the
leader-follower equilibrium in panel A of Figure 4.

In contrast, when firms are close competitors so that σ� <	�, the
intraindustry comovement in betas is strictly positive. The betas of both firms
increase before investment up to the common investment threshold xc. These
dynamics are similar to the case of an idle firm: firms’ betas are increasing in
the moneyness of their growth options. We illustrate the dynamics of firms’
betas in panel B of Figure 4.

Figure 5 illustrates firms’ betas before investment for different values of σ�.
The beta of firm L is strictly greater than one in both types of equilibria. In
the leader-follower equilibrium, the beta of firm M is strictly lower than one
before firm L invests, as it expects a sharp reduction in prices when its peer
adds capacity. In any clustering equilibrium, the beta of firm L is strictly higher
than one by construction; firm L pursues a strategy so that its value under joint
investment is weakly higher than its value as a leader.

Figure 5 illustrates the beta of firm M before investment for different values
of σ�. In the leader-follower equilibrium, the beta of firm M is strictly lower
than one before firm L invests. Firm M expects a significant reduction in prices,
driving its total firm value below the value of its assets in place; this, in turn,
drives its beta of firm M below unity.

Last, Figure 5 contributes to Carlson et al. (2014) in showing that the
preinvestment beta of firm M may be lower than one in the clustering
equilibrium. The rationale for this result relies on the strategic behavior of
firm M , which effectively acts as a follower and invests instantaneously with
firm L when firm L invests at xc >xs

M . Given that in equilibrium firm M invests
below its first-best joint-investment threshold xc∗

M >xc, the preinvestment value
of firm M in the clustering equilibrium may result lower than the value of its
assets in place if σ� is relatively high.

1.6 Strategic interaction in the cross-section
The model shows that firms’ strategic interaction also affects the intraindustry
cross-section of betas beyond the given cross-sectional heterogeneity in firms’
technologies σ�. We denote the intraindustry cross-sectional spread in betas
by σβt ≡ |βLt−βMt |

2 .

Proposition 5 (Cross sectional effects on betas). Given Xt <xs
M and the

refinement in assumption 1, the equilibrium effect of strategic interaction on
σβt is so that

313

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/28/2/297/1600102 by guest on 09 April 2024



[18:36 29/12/2014 RFS-hhu067.tex] Page: 314 297–341

The Review of Financial Studies / v 28 n 2 2015

Figure 4
Industry risk equilibrium dynamics
This figure illustrates the equilibrium dynamics of betas in the basic model. Panel A illustrates the leader-
follower equilibrium. Panel B illustrates the clustering equilibrium. The thicker trace corresponds to firm L. We
represent βjt as the average firm beta given 350 simulations of the Brownian shocks.
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Figure 5
Equilibrium betas as a function of σ�
This figure illustrates the effect of strategic interaction on firms’ betas. βj is the beta of firm j and σβt is the
intraindustry spread in betas. Panel A illustrates the leader-follower equilibrium strategies in which xs

L
<xs

M
.

Panel B illustrates the clustering equilibrium strategies xc∗
L

. The solid line corresponds to the strategy of firm
L, and the dashed line corresponds to the strategy of firm M . The term σs

βt
−σs∗

βt
>0 captures the difference

between intraindustry spread in betas of an industry in which firms follow strategies xs
j

, and the spread in betas

of an industry in which firms follow strategies xs∗
j

, where xs∗
j

denotes the strategies of a Stackelberg game in

which firm L leads by assumption. The term σc∗
βt

−σs
βt

<0 captures the difference between intraindustry spread

in betas of an industry in which firms follow strategies xs
j

, and the spread in betas of an industry in which firms

invest at the Pareto optimal clustering threshold xc∗
L

.

• if σ� ≥	�, preemption amplifies σβt so that σ s
βt −σ s∗

βt ≥0, and
• if σ� <	�, firms’ strategic delay, thereby dampening σβt so that σ c∗

βt −
σ s

βt <0.

Proof. See Appendix C. �

In industries with leaders and followers in which λs >0, firm L invests more
aggressively than in a standard Stackelberg game to ensure its position as a
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leader.As a result, preemption amplifies the cross-sectional differences in firms’
betas. Proposition 5 therefore implies that the cross-sectional heterogeneity in
firms’ technologies σ� is not sufficient to explain by itself the intraindustry
spread in betas. Otherwise, σ s

βt would equal σ s∗
βt . Figure 5 illustrates the effects

of preemption on σβt at Xt =X0. The term σ s
βt −σ s∗

βt is strictly positive in the
range σ� >	� if λs >0. In Appendix C, we prove that this inequality holds
until both firms invest.

In industries in which firms are sufficiently close competitors, we observe
that firms could invest following leader-follower strategies and yet the Pareto
optimal outcome is so that both firms invest simultaneously at a higher threshold
xc∗

L >xs
M . This strategic delay in firms’ investment decisions is discussed by

Weeds (2002) for the case of identical firms. In our paper, firms’ strategic delay
dampens the cross-sectional differences in betas relative to the leader-follower
equilibrium outcome. Figure 5 illustrates the effect of strategic delay on σβt at
Xt =X0. The term σ c∗

βt −σ s
βt is strictly negative in the range σ� <	�.

2. Testable Implications

The basic model in the previous section characterizes the industry dynamics of
investment and expected returns as a function of the unobservable parameter
σ�. For the sake of empirical tests, we review its predictions in a more general
setting. We obtain the empirical prediction that the intraindustry dynamics of
investment and risk in imperfectly competitive industries are driven by the
intraindustry value spread.

2.1 Firms with different installed capacities
The neoclassical model by Hayashi (1982) predicts that the optimal investment
of any firm depends on its own marginal product of capital or q ≡VK . In an
imperfectly competitive industry, we find that the investment strategy of each
firm also depends on the intraindustry standard deviation in q.

To illustrate this argument, we complement the analysis in Section 1 by
considering the alternative type of industry, in which firms differ exclusively
in their installed capacity before investment Kj . We focus on Kj and �j as
relevant sources of heterogeneity across firms to build on economic intuition.
The intraindustry heterogeneity in Kj relates broadly to industries in which
firms differ in their assets in place. The intraindustry heterogeneity in �j relates
broadly to industries in which firms differ in their growth opportunities.

When firms differ in Kj , we prove in Appendix D that firms with a lower
installed capacity find it less costly to invest earlier than their competitors so
that

∂

∂Kj

[
∂Vjt

∂xj

]
<0, (13)

where the sorting condition in Equation (13) applies to any possible investment
strategy xj . The economic rationale of this prediction relates to the study by
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Boyer et al. (2001). Because the relative gain from investing is larger for
smaller firms, smaller firms are willing to invest earlier. All else being equal,
the option to invest is relatively more valuable for the firm with the lowest
installed capacity.

We apply the solution approach and the equilibrium refinement in Section 1
to solve for the investment and risk dynamics of industries in which firms differ
in Kj . The equilibrium outcome depends on the cross-sectional differences in
firms’ installed capacities before investment σK ≡ |KL−KM |

2 .

Proposition 6 (Equilibrium dynamics with σK >0). The subgame-perfect
industry equilibria for N =2 with KL <KM are so that

• if σK ≥	K , firm L invests earlier than firm M so that xs
L <xs

M and firms’
betas correlate negatively, and

• if σK <	K , it is Pareto optimal for both firms to invest at the threshold
xc∗

L and firms’ betas correlate positively,

where 	K is determined endogenously in equilibrium.

Proof. See Appendix D. �

When firms differ exclusively in Kj , the leader-follower equilibrium is so
that the smaller firm with the lower installed capacity KL invests earlier than
the larger firm. In both types of equilibria, the smaller firm catches up in market
share with the larger firm upon investment. Firms’ market shares become less
concentrated as they exercise their growth options.

The implications on industry risk dynamics are qualitatively the same as
those in the basic model. The higher the dispersion in installed capacities
across firms, the lower the intraindustry correlation in firms’ expected returns.
Moreover, because the firm with the lower installed capacity is the one with
the more profitable growth option, it is straightforward to show that the smaller
firm has a higher beta in both types of equilibria. Concerning the cross-section
of returns, firms’strategic delay dampens the intraindustry spread in betas when
σK <	K . Conversely, preemption amplifies the cross-sectional differences in
betas between small and large firms when σK ≥	K .

2.2 Industry dynamics and the intraindustry value spread
We restate the predictions in the basic model and the model in Proposition 6
considering firms’ marginal product of capital before investment. We define a
scalar qj0 so that qj0 is the marginal product of capital of firm qjt , evaluated
at Xt =X0 and some strategy x. The choice of the strategy x to define qj0 is
without loss of generality; we use the same strategy for all firms so that it does
not affect the sorting of qj0. We evaluate qjt at Xt =X0 to rank firms by their
marginal product of capital before investment.
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In industries in which firms differ in Kj or �j , we prove in Appendix E that
firms with higher q at Xt =X0 or qj0 have the ability to invest earlier so that

∂

∂qj0

[
∂Vjt

∂xj

]
>0. (14)

The inequality in Equation (14) generalizes the economic intuition behind
the sorting conditions in Equations (4) and (13). Consider first the case in which
firms differ exclusively in their marginal costs of production after investment
�j . The more efficient firm or firm with lower �j has the ability to invest
earlier. For any strategy xj , firms with a higher q have the ability to invest
earlier. Consider now the case in which firms differ exclusively in their installed
capacity before investment Kj . Given that the marginal product of capital q is
strictly decreasing in Kj , the firm with the lower installed capacity Kj has a
higher q, and the willingness to invest earlier.

Given the sorting condition in Equation (14), we redefine firm type in terms
of firms’ marginal product capital qj0. When firms differ in either Kj or �j ,
we prove in Appendix E that firms invest simultaneously if σq0 is sufficiently
low, and sequentially otherwise. We also show that the same qualitative results
hold in the general case in which firms differ in both Kj and �j . Because firms’
marginal q is not observable, we derive testable implications by considering
the identity between q and the market-to-book ratio V

K
.

Lemma 1. qjt ≡ Vjt

Kj
− 1

εδ

[
p−

t

Y−
t

+
(

p+
t

Y +
t

− p−
t

Y−
t

)(
Xt

xj

)υ−1
]

Lemma 2. σqt ≡ σ V
K

t

The marginal product of capital qjt in Lemma 1 consists of two terms. The
first term is equal to the market-to-book ratio of the firm. The second term is
consistent with Hayashi (1982) and captures the marginal extraordinary income
per unit of capital attributable to firms’ market power. Because the second term
of qjt is common to all firms in the same industry, the cross-sectional variation
in q within an industry or σqt equals the intraindustry value spread σ V

K
t
. This

explains Lemma 2.

Proposition 7 (Industry dynamics and the value spread). Under imperfect
competition, firms’ investment strategies with N =2 are such that

• if σ V
K

0 ≥	 V
K

0, the betas of leaders and followers correlate negatively,
and

• if σ V
K

0 <	 V
K

0, firms investments cluster, and their betas correlate
positively.

Proof. See Appendix E. �
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Proposition 7 provides the core testable implication that the comovement
in firms’ betas and returns is higher in industries with high intraindustry value
spread. We provide the supporting empirical evidence in Section 3.

Similarly, Proposition 7 implies that average industry betas are more
predictable in industries with low value spread. In industries with low value
spread, the betas of all firms increase simultaneously before investment and
then decrease in tandem upon investment. In contrast, in industries with high
value spread, the dynamics of the average industry beta are less predictable.
At any point in time, the increase in the betas of those firms that are about to
invest are mitigated by the reduction in the betas of the remaining firms.

2.3 Industry dynamics, markups, and concentration
The model predicts that the dynamics of firms’ investments and betas are
more positively correlated in industries with low value spread. We hereby
formulate additional testable predictions on the relation between the HHI and
the intraindustry spread in markups. We define mj as the markup of firm j ,
which equals the ratio of operating profits by sales.

In the basic model, the intraindustry value spread, the HHI, and the
intraindustry spread in markups are positively correlated. As a result, the
testable implications on the value spread also hold for these additional
measures. Industries with leaders and followers are more concentrated and
have higher spread in markups than do industries in which firms invest
simultaneously.9 Firms’ investments and betas correlate more positively in
industries with low value spread, low HHI, and low spread in markups.

However, the implied positive correlation between σ V
K

, σm, and HHI need not
hold in all industries. A deconcentrating industry may have a high value spread,
and a concentrating industry may have a lower value spread.Arelevant example
is provided in the model of Proposition 6. When firms differ exclusively in their
installed capacities before investment, the smaller firm catches up in market
share with the larger firm upon investment, so that the HHI of the industry
decreases as firms invest. Hence, if the amount invested by the leading small
firm is sufficiently large, the HHI of a deconcentrating industry with high value
spread may be higher than the HHI of a deconcentrating industry with low
value spread.

Implication is that standard measures of competition, such as the HHI and
σm may prove insufficient to capture the degree of competition in an industry,
because they are static. Firms’ investment decisions depend not only on the
current spread in markups or market shares but also on the expected future
changes in markup and market shares. In contrast, the intraindustry value

9 In the basic model, the markup equals one before firm j invests and �j thereafter. Hence, the intraindustry
spread in markups equals σ� once all firms invest. The HHI equals zero before any firm invests and equals

1
2

(
σ2
πt

μ2
πt

+1

)
thereafter.
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spread σ V
K

is an observable industry characteristic that captures the unobserved
heterogeneity in firms’ production technologies over time.

We extrapolate the predictions on industry dynamics and the intraindustry
value spread to σm and the HHI only when these measures are positively
correlated. Static measures of competition, such as σm and the HHI, sort
industries in the same way as the intraindustry value spread when there is
persistence in firms’ relative position in the product market; that is, leaders
remain leaders, while followers remain followers over time. We explore in
Section 3 the empirical relation between σ V

K
, σm and the HHI.

A related implication is that average industry expected returns should be
more predictable in less concentrated industries, unless these industries are
undergoing deep transitions from high to low competition, or vice versa. This
is consistent with the evidence by Hoberg and Phillips (2010), who report that in
less concentrated industries, periods of high market-to-book ratios, high returns,
high betas, and high investment are followed by periods of lower market-to-
book ratios, lower investment, lower returns, and lower betas.

3. Empirical Evidence

The theoretical framework described so far provides qualitative predictions
on how firms’ strategic interaction affects the intraindustry dynamics of
investments and betas. A reasonable concern, however, is whether these effects
are economically significant. We therefore assess whether the main testable
implications of our model hold on average for the cross-section of U.S.
industries. We find supporting empirical evidence on the following predictions.

• Firms’ investment strategies are significantly related to the intraindustry
value spread.

• Firms’ betas and returns correlate more positively in industries with low
intraindustry value spread.

• Firms’ betas and returns correlate more positively in industries with low
intraindustry standard deviation in markups and low HHI.

3.1 Data set and empirical approach
Our tests rely on similar data sets used in previous studies, such as those of
Hoberg and Phillips (2010). We define an industry by its four-digit SIC code.
This is the finest available industry classification that is available in our merged
CRSP/Compustat data set.

We include all listed in firms in NYSE, AMEX, and Nasdaq. We merge the
CRSP monthly returns file with the Compustat annual file between January
1968 and December 2008. We use data at annual frequency to run the tests on
investment equations. We use data at monthly frequency to run the asset-pricing
tests. We elaborate on the database construction in Appendix G. We report the
summary statistics of the working sample in Table 1.
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Table 1
Working sample statistics

Firm level Industry level

Mean SD N Mean SD N

I
K

0.360 0.520 113,007 0.324 0.293 14,745

β 1.102 0.947 115,702 1.040 0.547 15,014
R 0.082 0.564 115,765 0.073 0.366 15,077
V
K

1.477 0.826 110,355 1.407 0.525 14,931
V −B
K−B

2.085 1.543 109,797 1.985 1.050 14,836
B
K

0.526 0.230 115,702 0.544 0.145 15,014
π
K

0.082 0.219 115,633 0.110 0.099 15,013

m 0.144 0.110 115,419 0.129 0.075 14,779
σ I

K

0.274 0.353 12,584

σβ 0.635 0.417 12,815
σR 0.374 0.279 12,815
σ V

K

0.530 0.394 12,693

σ V −B
K−B

1.088 0.718 12,523

σ B
K

0.178 0.081 12,815

σ π
K

0.111 0.116 12,811

σm 0.058 0.047 12,782
lnHHI 5.645 1.185 8,539
lnCR4 3.583 0.642 8,539
lnCR8 3.917 0.555 8,539
ω I

K

0.031 0.066 14,812

ωβ 0.026 0.032 14,857
ωR 0.016 0.012 14,857
ω V

K

0.107 0.213 14,849

ω V −B
K−B

0.178 0.201 14,244

This table reports the summary statistics of our working sample of U.S. public firms from 1968 to 2008. I
K

is
the investment rate; β is the equity beta; R is the stock return in excess of the risk-free rate, which is annualized
in this table, since all statistics are reported in annual terms; V

K
is the market-to-book asset ratio; V −B

K−B
is the

market-to-book equity ratio; B
K

is the book leverage ratio; π
K

is operating cash flows to assets; m is the operating
markup on profits; σx denotes the intraindustry standard deviation in variable x; lnHHI is the logarithm of the
U.S. Census HHI; lnCR4 and lnCR8 are the logarithm of the U.S. Census concentration ratios CR4 and CR8;
and ωx denotes the intraindustry comovement in variable x.

We denote the relevant variables in our tests as the equity beta β, the stock
return in excess of the risk-free rate R, the market-to-book asset ratio V

K
,

the book-leverage ratio B
K

, the market-to-book equity ratio V −B
K−B

, cash-flow-
to-assets ratio π

K
, the investment rate I

K
, and the markup in profits m. We

follow Khanna and Thomas (2009) and construct a measure of comovement
that captures the average pairwise correlation in firms’ investments, market-to-
book equity ratios, market-to-book asset ratios, betas, and returns by industry.
We denote the intraindustry comovement of variable x in period t as ωxt .

We consider the two static measures of competition discussed in Section 2.
One is the intraindustry deviation in markups or σmt , which we construct using
the Compustat annual files. The other is the logarithm of the HHI by four-digit
SIC code reported by the U.S. Census Bureau or lnHHI, which is limited to
manufacturing industries only. In line with Ali, Klasa, and Yeung (2009), we do
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not compute the HHI using CRSP/Compustat sales data, because such an index
is not highly correlated with the U.S. Census Bureau concentration index.

We also use the logarithm of the concentration ratios CR4 and CR8 for
manufacturing industries as additional measures of competition in our empirical
tests. The concentration ratio CR4 is the sum of the largest four market shares
in the industry reported by the U.S. Census Bureau. Similarly, the CR8 equals
the sum of the largest eight market shares in the industry.

We apply the same empirical methodology to test all our implications on
investment and risk. Because in our model the underlying industry determinants
of demand and the number of firms are constant, we run all tests using cross-
sectional regressions, as in Fama and MacBeth (1973). To account for serial
correlation, we consider Newey-West standard errors. We have also run all tests
using OLS regressions with year dummies, with qualitatively similar results.

Finally, the model assumes that firms are unlevered, while most firms in our
working sample are levered. We run our tests using two alternative definitions
of the intraindustry value spread. One definition is based on the asset value
spread or σ V

K
t
, and another is based on the equity value spread σ V −B

K−B
t
.

3.2 Investment, betas, and returns
The asset-pricing implication that the firms’ betas comove more positively
in industries with low value spread relies on three important theoretical
predictions. The first is that firms’ investments relate significantly to the
intraindustry value spread. We provide the corresponding empirical evidence in
Table 2. We find that the intraindustry value spread is significant in explaining
investment, both at the firm level (panels B and C) and at the industry level
(panels E and F). We obtain similar results when using the intraindustry asset

Table 2
Investment and the intraindustry value spread

Firm level Industry level

(A) (B) (C) (D) (E) (F)

V
K

0.131∗∗∗ 0.115∗∗∗ 0.121∗∗∗ 0.151∗∗∗ 0.145∗∗∗ 0.138∗∗∗
(0.010) (0.009) (0.009) (0.012) (0.016) (0.012)

π
K

−0.084∗ −0.067 −0.067 −0.182∗∗∗ −0.123∗∗∗ −0.120∗∗∗
(0.046) (0.044) (0.044) (0.064) (0.053) (0.059)

σ V
K

0.090∗∗∗ 0.013∗∗∗

(0.012) (0.002)
σ V −B

K−B

0.039∗∗∗ 0.017∗∗∗

(0.005) (0.005)
N 107,749 105,633 105,243 14,672 12,552 12,385
Avg. R2 0.053 0.057 0.054 0.081 0.097 0.097

This table reports the Fama and MacBeth (1973) regressions on the investment to capital ratios I
K

at the firm

and industry levels. The data used are in annual frequency. V
K

is the market-to-book asset ratio; V −B
K−B

is the
market-to-book equity ratio; π

K
is operating profits to assets; and σx denotes the intraindustry standard deviation

in variable x. Newey-West corrected standard errors are reported in parentheses. ***p<0.01, **p<0.05, and
*p<0.1.
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Table 3
Investment, betas, and returns

Comovement in betas ωβ Comovement in returns ωR

(A) (B) (C) (D) (E) (F) (G)

ω I
K

0.055∗∗∗ 0.036∗∗∗

(0.002) (0.001)
ω V

K

0.028∗∗∗ 0.013∗∗∗

(0.003) (0.001)
ω V −B

K−B

0.020∗∗∗ 0.013∗∗∗

(0.002) (0.001)
ωβ 0.372∗∗∗

(0.038)
N 147,241 147,243 145,245 147,241 147,243 145,245 147,857
Avg. R2 0.034 0.062 0.034 0.056 0.062 0.062 0.366

This table reports the Fama and MacBeth (1973) regressions on comovement in betas and returns. The data are
used in monthly frequency. ωx denotes the intraindustry comovement in variable x; β is the equity beta; R is the
stock return; I

K
is the investment rate; V −B

K−B
is the market-to-book equity ratio; and V

K
is the market-to-book

asset ratio. Newey-West corrected standard errors are reported in parentheses. ***p<0.01, **p<0.05, and
*p<0.1.

value spread (panels B and E), and when using the intraindustry equity value
spread (panels C and F).

The second prediction is that firms’investment decisions affect their exposure
to systematic risk. We provide the supporting empirical evidence of this result
in panels A−F of Table 3, by showing that the intraindustry comovement in
betas and returns are significantly related to the intraindustry comovement in
investment. Similarly, the intraindustry comovement in betas and returns are
significantly related to the intraindustry comovement in market-to-book ratios.

Finally, the predictions of our single-factor model apply to both betas and
returns. As in other research papers, we acknowledge that our single-factor
model does not explain why value and size premia exist in returns. However,
both in the model and in the data, the intraindustry comovement in betas is
significantly related to the intraindustry comovement in returns. The average
R-squared in panel G of Table 3 indicates that the intraindustry comovement
in betas explains on average 37% of the intraindustry comovement in returns.

3.3 Industry risk dynamics and product markets
The model predicts a negative and significant correlation between the
intraindustry comovement in betas and returns and the intraindustry value
spread. Table 4 provides the corresponding empirical evidence. We find a
negative and significant correlation between the intraindustry comovement
in betas and the intraindustry value spread (panels A and B). We also find
a negative and significant correlation between the intraindustry comovement
in returns and the intraindustry value spread (panels E and F).

The model further suggests that those industries with low value spread may
also have low standard deviation in markups and low HHI. This holds when
the intraindustry value spread is positively correlated with the intraindustry
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Table 4
Industry risk dynamics, the value spread and static measures of competition

Comovement in betas ωβ Comovement in returns ωR

(A) (B) (C) (D) (E) (F) (G) (H)

σ V
K

−0.0024∗∗∗ −0.0012∗∗∗

(0.0008) (0.0003)
σ V −B

K−B

−0.0016∗∗∗ −0.0009∗∗∗

(0.0004) (0.0002)
σm −0.0316∗∗∗ −0.0132∗∗∗

(0.0018) (0.0008)
lnHHI −0.0004∗∗∗ −0.0001∗∗∗

(0.0001) (0.0000)
N 147,243 145,245 148,412 84,623 147,243 145,245 148,412 84,623
Avg. R2 0.023 0.021 0.032 0.015 0.026 0.023 0.031 0.012

This table reports the Fama and MacBeth (1973) regressions on comovement measures as a function of the
intraindustry value spread and other static measures capturing competition. The data are used in monthly
frequency. ωx denotes the intraindustry comovement in variable x; β is the equity beta; R is the stock return;
V
K

is the market-to-book asset ratio; V −B
K−B

is the market-to-book equity ratio; m is the markup on operating
profits; and lnHHI is the logarithm of the U.S. Census HHI. Newey-West corrected standard errors are reported
in parentheses. ***p<0.01, **p<0.05, and *p<0.1.

standard deviation in markups and with the HHI. In our data set, we observe a
significant and positive correlation between the intraindustry asset value spread,
the equity value spread, the standard deviation in markups, and the log of the
HHI. The pairwise correlation between the asset (equity) value spread and
the dispersion in markups is 17.55% (resp. 19.73%). The pairwise correlation
between the asset (equity) value spread and the logarithm of the HHI is 16.51%
(resp. 16.46%).

The corresponding testable implication is that of a negative and significant
correlation between these static measures of competition and the intraindustry
comovement in betas or returns. As suggested by the model, we report in
Table 4 a negative and significant relation between the comovement in betas
and the static measures of competition given by σm and lnHHI (panels C and
D). We also find a negative and significant relation between the comovement
in returns, and the static measures of competition given by σm and lnHHI
(panels G and H). Using an alternative empirical approach, Hoberg and Phillips
(2010) also show that returns comove more positively in industries with
low HHI.

3.4 Discussion
The evidence in Table 4 is consistent with the predictions of our model. It need
not follow, however, that our model is the only theory that explains the results in
Table 4. Empirically, it is very difficult to isolate the intraindustry heterogeneity
across firms that leads to differences in firms’ investment strategies as predicted
by the model, from the intraindustry heterogeneity attributable to poor industry
definitions or other technological differences that need not affect firms’strategic
behavior. We derive testable implications out of a game of strategic interaction
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Table 5
Industry risk dynamics and other measures of competition

Comovement in betas ωβ Comovement in returns ωR

(A) (B) (C) (D) (E) (F)

μm −0.0155∗∗∗ −0.0062∗∗∗
(0.0041) (0.0023)

lnCR4 −0.0020∗∗∗ −0.0004∗∗∗
(0.0004) (0.0001)

lnCR8 −0.0032∗∗∗ −0.0014∗∗∗
(0.0005) (0.0002)

N 148,412 84,623 84,623 148,412 84,623 84,623
Avg. R2 0.008 0.018 0.023 0.012 0.009 0.013

This table reports the Fama and MacBeth (1973) regressions on comovement measures as a function of the
intraindustry value spread and static measures of competition. The data used are in monthly frequency. ωx

denotes the intraindustry comovement in variable x; β is the equity beta; R is the stock return; μm is the average
industry markup on operating profits; lnCR4 is the logarithm of the sum of the four largest market shares in
the industry as reported by the U.S. Census Bureau; and lnCR8 is the logarithm of the sum of the eight largest
market shares in the industry as reported by the U.S. Census Bureau. Newey-West corrected standard errors are
reported in parentheses. ***p<0.01, **p<0.05, and *p<0.1.

by relating unobservable differences in firms’ production technologies to their
market-to-book ratios. In doing so, however, we are subject to the empirical
concern of identification.

To address this concern, we provide additional empirical evidence on the
asset-pricing implication that the intraindustry comovement in firms’ exposure
to risk is higher in more competitive industries, that is, industries in which firms’
strategic interaction does not lead to negative comovement in firms’ betas. Our
results in Table 5 complement those in Table 4 and the evidence by Hoberg
and Phillips (2010), because we regress our measures of comovement in betas
and returns with alternative measures of competition that are not defined as
intraindustry measures of dispersion.

Table 5 shows that the intraindustry comovement in betas and returns is
negatively related to the average industry markup. This indicates that there
is more comovement in betas and returns in more competitive industries.
Similarly, the intraindustry comovement in betas and returns is negatively
related to the log concentration ratios lnCR4 and lnCR8 for manufacturing
industries. Hence, there is less comovement in betas and returns in industries
in which few firms have a high market share.

4. Conclusion

In this paper we study how strategic interaction affects the intraindustry
dynamics of corporate investment and expected returns. Under imperfect
competition, a firms’exposure to systematic risk or beta is affected significantly
not only by its own investment decisions but also by the investment decisions
of its industry peers.

In imperfectly competitive industries, we predict that the investment strategy
and exposure to systematic risk of each firm is affected by the marginal product
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of capital of all its competitors; this suggests why the empirically observed
value spread is predominantly intraindustry. In the model and in the data, we
find that firms’betas and returns correlate more positively in industries with low
value spread. We also show empirically and explain theoretically why firms’
betas and returns correlate more positively in industries with low HHI, and low
intraindustry standard deviation in markups.

To conclude, we note that the fundamental insight of our paper is that
product markets have nontrivial effects on firms’ investment decisions and
their expected returns. In this context, dynamic models of strategic interaction
typically studied in the industrial organization literature become a useful tool
to explain empirical regularities in the cross-section of returns.

Appendix A. Firm Value

The proof of the expression for Vjt in (3) follows Carlson, Fisher, and Giammarino (2004). For

any strategy xj , we denote A
−
j t =

π
−
j
δ

+
�π

−
j

δ
as the value of the assets in place of firm j before

investment, and A
+
j t =

π+
j
δ

+
�π+

j
δ

as the value of the assets in place of firm j after investment. At
the investment threshold Xt =xj , the value-matching condition ensures that the firm can pay f K

to increase the value of its assets in place from A
−
j t to A

+
j t . Given exercise at Xt ≥xj , the value of

the growth option to invest is calculated as a perpetual binary option with payoff A
+
j t −A

−
j t −f K .

We then observe10 that the expected value of the growth option to invest is given by Gjt ≡(
A

+
j t −A

−
j t −f K

)(
Xt
xj

)υ

, where
(

Xt
xj

)υ

is the price of a contingent claim that pays one if the firm

invests and zero otherwise, and the parameter υ >1 equals

υ =
1

2
− r−δ

σ 2
x

+

[(
r−δ

σ 2
x

− 1

2

)2

+
2r

σ 2
x

] 1
2

.

For any investment strategy xj , we conclude that Vjt equals A
−
j t +Gjt if Xt <xj and A

+
j t if Xt ≥xj .

In what follows, we specify the functional form of firms’ value functions when firms invest
sequentially and simultaneously. In doing so, we do not characterize explicitly firms’ investment
strategies. We use these expressions in the derivation of the equilibrium outcome in Appendix B.

Consider first the values of firms L and M when both firms invest simultaneously at a given
threshold x. For any value of Xt , the value of firm j =L,M equals

Vjt =

⎧⎪⎪⎨⎪⎪⎩
(2K)−

1
ε K

δ
Xt +

[
(�LK +�MK)−

1
ε �j

K
δ
x−f K−(2K)−

1
ε K

δ
x
](

Xt
x

)υ

if Xt <x

(�LK +�MK)−
1
ε �jK

Xt
δ

if Xt >x.

10 See Dixit and Pindyck (1994). The details of the derivation of υ >1 are provided in Chapter 5.
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Consider now the valuations of firms L and M in a leader-follower game in which xL <xM .
For any value of Xt , the value of the leading firm L is given by

VLt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2K)−
1
ε K

δ
Xt +

[
(�LK +K)−

1
ε �L

K
δ
xL −f K−(2K)−

1
ε K

δ
xL

](
Xt
xL

)υ

+[
(�MK +�LK)−

1
ε �L

K
δ
xM −(�LK +K)−

1
ε �L

K
δ
xM

](
Xt
xM

)υ

if Xt <xL

(�LK +K)−
1
ε �L

K
δ
Xt +[

(�LK +�MK)−
1
ε −(�LK +K)−

1
ε

]
�L

K
δ
xM

(
Xt
xM

)υ

if xL <Xt <xM

(�LK +�MK)−
1
ε �LK

Xt
δ

if Xt >xM.

For any value of Xt , the value of firm M is given by

V s
Mt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2K)−
1
ε K

δ
Xt +

[
(�LK +K)−

1
ε −(2K)−

1
ε

]
K
δ
xL

(
Xt
xL

)υ

+[
(�LK +�MK)−

1
ε �M

K
δ
xM −f K−(�LK +K)−

1
ε K

δ
xM

](
Xt
xM

)υ

if Xt <xL

(�LK +K)−
1
ε K

δ
Xt +[

(�LK +�MK)−
1
ε �M

K
δ
xM −(�LK +K)−

1
ε K

δ
xM −f K

](
Xt
xM

)υ

if xL <Xt <xM

(�LK +�MK)−
1
ε �MK

Xt
δ

if Xt >xM.

Consider the off-equilibrium value of firm M when it deviates from its strategy as a follower
and invests instead as a leader at the threshold x̃M . We denote the corresponding value function
by ṼMt . This function does not correspond to any particular type of equilibrium in the paper. We
also denote the threshold of firm L when it invests as a follower by x̃L.

ṼMt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2K)−
1
ε K

δ
Xt +

[
(�MK +K)−

1
ε �M

K
δ
x̃M −f K−(2K)−

1
ε K

δ
x̃M

](
Xt
x̃M

)υ

+[
(�MK +�LK)−

1
ε �M

K
δ
x̃L −(�MK +K)−

1
ε �M

K
δ
x̃L

](
Xt
x̃L

)υ

if Xt <x̃M

(�LK +K)−
1
ε �L

K
δ
Xt +[

(�MK +�LK)−
1
ε −(�MK +K)−

1
ε

]
�M

K
δ
x̃L

(
Xt
x̃L

)υ

if x̃M <Xt <x̃L

(�MK +�LK)−
1
ε �MK

Xt
δ

if Xt >x̃L,

Finally, consider the off-equilibrium value of firm L when it deviates from its strategy as a leader
and invests instead as a leader at the threshold x̃L. We denote the corresponding value function by
ṼLt . This function does not correspond to any particular type of equilibrium in the paper.

ṼLt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2K)−
1
ε K

δ
Xt +

[
(�MK +K)−

1
ε −(2K)−

1
ε

]
K
δ
x̃M

(
Xt
x̃M

)υ

+[
(�LK +�MK)−

1
ε �L

K
δ
x̃L −f K−(�MK +K)−

1
ε K

δ
x̃L

](
Xt
x̃L

)υ

if Xt <x̃M

(�MK +K)−
1
ε K

δ
Xt +[

(�LK +�MK)−
1
ε �L

K
δ
x̃L −(�LK +K)−

1
ε K

δ
x̃L −f K

](
Xt
x̃L

)υ

if x̃M <Xt <x̃L

(�LK +�MK)−
1
ε �LK

Xt
δ

if Xt >x̃L.
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Appendix B. Equilibrium Outcome of the Basic Model

We derive the proof of the equilibrium outcome in several steps. As a first step, we consider the
sorting condition of the game, and we derive firms’ leader-follower investment strategies xs

L <xs
M .

The derivation relies on the premise that firm M must be indifferent between investing as a leader
and as a follower. We then show that firm L has no incentive to deviate as a follower and that there
exists no alternative leader-follower equilibrium in which firm M invests first.

As a second step, we characterize the clustering equilibria xc . We prove that firm M has no
incentives to deviate from the clustering equilibrium. We consider a refinement to select the Pareto
optimal clustering equilibrium out of all possible clustering equilibria. We obtain a unique cutoff
value 	� so that firm L has incentives to invest jointly with firm M at the Pareto optimal clustering
equilibrium if σ� <	�.

B.1 Sorting Condition

The strategy pursued by firm j is given by xj . We denote by Xt Ŷ
− 1

ε
j the expected price by firm j

at time t . In equilibrium, Xt Ŷ
− 1

ε
j is equal to the market price pt when �π−

j t =0 and �π+
j t =0; we

use a more general notation, because the sorting conditions hold for any given investment strategy
of firm j , conditional on any strategy of firm −j . Using this notation, the preinvestment value
function Vjt defined in Xt <xj for any investment strategy xj of firm j and taking as given the
strategy of firm −j equals

Vjt =
(
Ŷ−

j

)− 1
ε
K

Xt

δ
+

[(
Ŷ +

j

)− 1
ε xj

δ
�jK−

(
Ŷ−

j

)− 1
ε xj

δ
K−f K

](
Xt

xj

)υ

.

Denote the market share of firm j upon investment by s+
j ≡ �j Kj

Ŷ+
j

. The sorting condition reflects

that, for any possible investment strategy xj , firms with more profitable growth opportunities find
it less costly to invest earlier, namely,

∂

∂�j

[
∂Vjt

∂xj

]
=(1−υ)

(
1− 1

ε
s+
j

)(
Xt

xj

)υ
K

δ

(
Ŷ +

j

)− 1
ε

<0.

The first factor is strictly negative given that υ >1. The second factor is strictly positive given
that ε>1 by assumption and the market share of any firm is lower than unity by construction (i.e.,
s+
j <1). The remaining factors are strictly positive.

B.2 Leader-follower Equilibrium
The leader-follower equilibrium is so that xs

L <xs
M . We derive the leader-follower equilibrium in

steps. First, we obtain the thresholds xs
j . Second, we analyze the incentives of firm j to invest at the

threshold xs
j to understand why the derived strategies are an equilibrium outcome. As a corollary,

we prove that the shadow cost of preemption λs induces firm L to accelerate investment.
Firm M maximizes its value conditional on firm L being a leader. To ensure that xM is chosen

optimally, the derivative of VMt with respect to xM equals zero. The corresponding optimal strategy
xs

M satisfies (7). The threshold xs
M is the same that obtains in a Stackelberg game in which firm M

invests second by assumption. Using our notation in Section 1, this implies xs
M ≡xs∗

M . Furthermore,
by rewriting xs

M as

xs
M

δ

[
(�LK +�MK)−

1
ε �MK−(�LK +K)−

1
ε

]−1
=

υ

υ−1
f K,

we note that the optimal investment rule of the follower is a modified net present value formula
with markup υ

υ−1 >1. This markup reflects the impact of irreversibility on the investment policy,
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and it is increasing in uncertainty given that υ >1 is increasing in σ . This is consistent with the
stylized prediction that the value of waiting to invest increases with uncertainty.

Firm L determines the threshold xs
L that maximizes its value subject to the incentive

compatibility constraint of firm M , namely,

max
xs
L

VLt s.t. ṼMt ≤V s
Mt .

We solve for the optimization problem of firm L using Kuhn-Tucker. The Lagrangian considers
both the value function of firm L and the complementary slackness condition in (6). The constrained
optimization problem of firm L at Xt <xs

L is given by

L=VLt −λs
(
ṼMt −V s

Mt

)
,

where the first-order conditions that stem from the optimization problem are

∂L
∂xL

=0 and
∂L
∂λ

=0,

and the optimal thresholdxs
L satisfies (8). The multiplierλs quantifies the shadow cost of preemption

for firm L. The optimality condition ∂L
∂λ

=0 yields the multiplier λs >0 so that the second term in
(6) equals zero.

The threshold xs
L is so that, conditional on firm L investing at xs

L, the best response of its
competitor is to invest at the follower threshold xs

M . Consider first the incentives of firm L. If firm
L invests earlier than xs

L, firm M prefers to stay as a follower, so a leader-follower equilibrium
would be feasible. However, firm L has no incentives to invest earlier: it would imply a shadow
cost strictly higher than λs . If firm L invests later than xs

L, firm M has incentives to preempt firm
L; hence, the leader-follower equilibrium is not feasible. Once firm M has incentives to wait, the
threshold xs

M is unconditionally the optimal strategy to follow.
As a corollary, we show that in the leader-follower equilibrium, preemption erodes its option

value of waiting to invest of firm L. We compare the investment threshold xs
L in the leader-follower

equilibrium in which λs >0, with the investment threshold xs∗
L in a Stackelberg game in which

firm L leads by assumption. It is straightforward to show that the Stackelberg threshold xs∗
L equals

xs
L for the special case in which λs =0 (i.e., firm M has no incentive to preempt firm L). In what

follows, we prove that xs
L <xs∗

L , namely,

xs
L

xs∗
L

=
1−λs

1−λsϑ
<1 where ϑ ≡ (�M +1)−

1
ε �M −(�L +1)−

1
ε

(�L +1)−
1
ε �L −2− 1

ε

,

and the inequality above indicates that if firm M has incentives to invest preemptively, firm L

optimally accelerates its investment to deter firm M .
The proof that xs

L <xs∗
L relies on two key properties of the model. The first relates to the fact

that xs∗
L <xs∗

M . Reordering the terms, this inequality implies that

ϑ ≡ (�M +1)−
1
ε �M −(�L +1)−

1
ε

(�L +1)−
1
ε �L −2− 1

ε

<1,

where ϑ <1 indicates that the marginal increase in profits of firm M when deviating from its
strategy as a follower is lower that the marginal increase in profits of firm L when investing as a
leader. This ensures that firm L is willing to incur a cost to preserve its position as a leader if firm
M deviates from its follower strategy.

The second property is that λs ∈ (0,1). Note that the investment threshold xs
L is strictly positive

whenever 1−λs

1−λsϑ
>0. One possible configuration to ensure that xs

L >0 is λs ∈ (0,1) and ϑ <1. An
alternative configuration would require λs >1 and λϑ >1. Given the expression for λs discussed
above, it is straightforward to see that λsϑ >1 holds if and only if ϑ >1. Hence, the only possible
case is λs ∈ (0,1) and ϑ <1.
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B.3 Equilibrium Implication of Sorting on Leader-follower Strategies
Just as in the literature of mechanism design, the sorting condition has two important implications.
The first is that if the incentive compatibility constraint (ICC) of firm M as follower is binding, the
ICC of the firm L is slack, so that firm L has no incentives to become a follower. This implies that
if V s

Mt = ṼMt , then V s
Lt >ṼLt at Xt ≤xs

L. The second implication is that there exists no alternative
leader-follower equilibrium in which firm M invests first. Hence, if ṼLt =V s

Lt so that firm L is
indifferent between being a leader and a follower, then ṼMt <V s

Mt at Xt ≤ x̃M .
We prove both of these statements by showing that the leader-follower equilibrium Markov

strategies xs
j are decreasing in firm type. Given this argument, firm M does not invest earlier than

firm L in equilibrium, nor firm L becomes a follower. The proof builds on the proof of Theorem
13.1 in Chapter 13 of Fudenberg and Tirole (1991). The derivation relates the ICCs of both firms
to the sorting condition of the model.

By definition of the leader-follower equilibrium in our model, firm L strictly prefers investing
as a leader to deviating and investing as a follower, namely,

V s
Lt >ṼLt ,

where firms’ values are preinvestment values before any firm invests, so that Xt ≤xs
L. Similarly,

in equilibrium, firm M weakly prefers investing as a follower to investing as a leader, so that

V s
Mt ≥ ṼMt

at Xt ≤xs
L, where V s

Mt is strictly equal to ṼMt at Xt =xs
L. Put together, these inequalities are the

ICCs of firm L and firm M in the leader-follower equilibrium of our model. Adding them up, we
can rewrite them so that (

V s
Lt −ṼMt

)−(ṼLt −V s
Mt

)
>0 (B1)

at Xt ≤xs
L, where the first term in parentheses in (B1) compares the values of firm L and firm M

as leaders, and the second term compares the values of both firms when investing as followers.
For convenience, we decompose the value of any firm j into two terms so that

Vjt ≡
π−

j t

δ
+

(
Xt

xj

)υ
(

π+
j

δ
− π−

j

δ
−f K

)
︸ ︷︷ ︸

vjt >0

+
�π−

j t

δ
+

(
Xt

xj

)υ
(

�π+
j

δ

)∣∣∣∣∣
Xt =xj︸ ︷︷ ︸

c[j,−j ],t <0

, (B2)

where vjt corresponds to the value of the firm as if the firm were idle. The term c[j,−j ],t <0 denotes
the expected reduction in the value of firm j due to the investment of its competitor −j .

To cancel out the heterogeneity in the values of firm j due to changes in the strategy of its
competitor, we state and later verify that a sufficient yet not necessary condition so that (B1) holds
is given by (

vs
Lt − ṽMt

)− (̃vLt −vs
Mt

)
>0, (B3)

because it also holds that

cs
[L,M],t − c̃[M,L],t >0 and c̃[L,M],t −cs

[M,L],t <0. (B4)

The inequality in (B3) focuses on the variation in firm type and firm strategy controlling for the
strategy of the rival firm. Considering that both the firm type �j and the strategy xj are defined in
the domain of real numbers, we rewrite (B3) so that

xL∫
xM

⎡⎢⎣�L∫
�M

∂2vjt

∂�j ∂xj

d�j

⎤⎥⎦dxj >0, (B5)

where the sign of
∂2vjt

∂�j ∂xj
in (B5) is exactly the same as the sign of the sorting condition in (4).

Given �L >�M and
∂2vjt

∂�j ∂xj
<0, the ICCs of both firms hold as long as xL <xM . As a result, the

leader-follower equilibrium Markov strategies xs
j are decreasing in firm type �j .
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We conclude by verifying that the expressions in (B4) hold. The term cs
[L,M],t is the expected

reduction in value for firm L as a leader when M invests as a follower. The term c̃[M,L],t is the off-
equilibrium expected reduction in value for firm M as a leader when firm L invests as a follower.
The inequality cs

[L,M],t − c̃[M,L],t >0 implies

[
(�LK +�MK)−

1
ε −(�LK +K)−

1
ε

]K

δ
xs

M

(
Xt

xs
M

)υ

>
[
(�LK +�MK)−

1
ε −(�MK +K)−

1
ε

]K

δ
x̃L

(
Xt

x̃L

)υ

.

Reordering the terms, the condition implies that if firm L invests as a follower, it does so earlier
that firm M as a follower, namely,

x̃L

xs
M

<

⎡⎣ (�MK +K)−
1
ε −(�LK +�MK)−

1
ε

(�LK +K)−
1
ε −(�LK +�MK)−

1
ε

⎤⎦ 1
υ−1

<1,

where the prediction that x̃L <xs
M can be easily checked by computing the optimal follower

threshold for firm x̃L. The optimal off-equilibrium follower threshold for firm L equals

x̃L =
f K

1
ε δυ

υ−1

(�L +�M )−
1
ε �L −(�M +1)−

1
ε

<xs
M. (B6)

Similarly, the term c̃[L,M],t is the off-equilibrium expected reduction in value for firm L as a
follower when M invests as a leader. The term cs

[M,L],t is the expected reduction in value for firm
M as a follower when firm L invests as a leader. The inequality c̃[L,M],t <cs

[M,L],t therefore implies

[
(�MK +K)−

1
ε −(2K)−

1
ε

]K

δ
x̃M

(
Xt

x̃M

)υ

<
[
(�LK +K)−

1
ε −(2K)−

1
ε

]K

δ
xs

L

(
Xt

xs
L

)υ

.

The condition above implies that if firm M wants to deviate as a leader, it should invest earlier
than firm L as a leader so that

xs
L

x̃M

>

⎡⎣ 2− 1
ε −(�L +1)−

1
ε

2− 1
ε −(�M +1)−

1
ε

⎤⎦ 1
υ−1

>1,

where the prediction that x̃M <xs
L relates to the sorting condition of the game. All else equal, the

growth option of firm L is more valuable than that of firm M . Consequently, if firm M is indifferent
between being a follower and a leader Xt =xs

L, then frm L is indifferent between being a follower
and a leader at a lower threshold x̃M <xs

L.

B.4 Sufficient Conditions for Clustering Equilibria
Consistent with Weeds (2002), we predict multiple clustering equilibria xc ∈ [xc

L,xc∗
L ], and we claim

that the Pareto optimal equilibrium is given by xc =x∗c
L . We denote by xc

L the lowest clustering
threshold that can be sustained as an equilibrium outcome, and is equal to the minimum joint-
investment threshold of firm L so that its value-matching condition holds and V s

Lt ≤V c
Lt . We

denote by xc∗
L the highest clustering threshold that can be sustained in equilibrium, which is the

optimal joint-investment threshold for firm L.
To prove these statements, we first analyze the conditions so that both firms expand capacity at

some threshold xc . Consider the incentives of firm L to deviate from the equilibrium threshold xc .
We assume for now and later verify that firm M has no unilateral incentives to deviate so that if
firm L invests, then firm M invests immediately. Consider then the incentives of firm L to deviate
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from xcand invest earlier at Xt <xc . We require that V s
Lt ≤V c

Lt at any point in time, so that firm
L has no unilateral incentive to invest as a leader. Given the definition of xc

L in (9), this implies
xc ≥xc

L.
Consider the incentives of firm L to deviate from the equilibrium threshold xc and invest later

at Xt >xc . Note that the minimum investment threshold at which firm L has a unilateral incentive
to invest jointly with firm M is given by xc

L. Assuming that firm M has no unilateral incentive
to deviate as a follower, firm M invests immediately if firm L invests, and hence it follows that
xc

L is a feasible joint-investment threshold as long as firm L believes that firm M will invest at
xc

L. This argument applies to any investment threshold in the range xc ∈ (xc
L,x∗c

L ). At the optimal
joint-investment threshold xc∗

L , it is a dominant strategy for firm L to invest regardless of the beliefs
about firm M , and firm M invests immediately. Hence, xc ≤xc∗

L .
Consider the incentives of firm M to deviate from the equilibrium threshold xc and invest later

at Xt >xc . For this sake, we take into account the optionality of investment: if firm M does not
invest when firm L does, it will invest optimally in the future. The optimal threshold of firm M as
a follower is given by xs

L. Consistent with Pawlina and Kort (2006), we conjecture and later verify
that a sufficient condition so that firm M has no incentives to delay its investment at xc is given
by xs

L ≤xc . Given xs
L ≤xc , and conditional on firm L investing at xc , firm L invests immediately.

Last, consider the incentives of firm M to invest earlier than the joint-investment threshold for
some Xt <xc . Two alternative cases may arise. The first is that firm M deviates by investing earlier
in the range xs

M <Xt <xc . In this range, firm M has no incentive to become a leader, because Xt is
already above its optimal follower threshold; hence, if firm L invests at xc , firm M will optimally
invest at the same time. The second case is that firm M deviates in the range Xt <xs

M . The value
of firm M as a leader may be lower, equal, or higher than its value as a follower in the range
xs

L ≤Xt <xs
M . If its value as a leader is lower than as a follower, then firm M optimally waits. If

its value as a leader is higher than as a follower, the optimal threshold at which firm M should
invest as a leader is equal to xs

L; by construction, however, the threshold xs
L is so that firm M is

indifferent between investing as a follower and as a leader. Hence, firm M has no incentives to
invest earlier than xc at Xt <xs

M <xc .
Put together, the conditions so that neither firm L nor firm M deviate from the clustering

threshold xc are given by V s
Lt ≤V c

Lt and xs
L ≤xc . Consistent with Pawlina and Kort (2006), we

prove that if V s
Lt ≤V c

Lt , then xs
M <xc. Moreover, given that x̃L <xs

M , it follows that V s
Lt ≤V c

Lt also
implies xc >x̃L. Therefore, if firm M has no incentive to deviate as a follower, then neither does
firm L. The only relevant condition for a clustering equilibrium to hold is V s

Lt ≤V c
Lt .

B.5 Threshold xc
L

In the body of the paper, we define the threshold xc
L so that firm L has no unilateral incentives to

deviate, namely,
xc

L =inf {xc ∈ (0,xc∗
L ] :V s

Lt ≤V c
Lt∀xc ∈ (0,xc∗

L ]},
where V c

Lt is the preinvestment value of firm L when both firms invest at a given clustering
equilibrium threshold xc . To derive xc

L analytically, we define the surplus function ξLt =V s
Lt −V c

Lt ,
assuming immediate exercise at the leader investment threshold so that

ξLt =
[
(�LK +K)−

1
ε �L −(2K)−

1
ε

]K

δ
Xt −f K +

[
(�LK +�MK)−

1
ε −(�LK +K)−

1
ε

]
×�L

K

δ
(Xt )

υ
(
xs∗
M

)1−υ −
[
(�LK +�MK)−

1
ε �L −(2K)−

1
ε

]K

δ
(Xt )

υ
(
xc
)1−υ +f K (Xt )

υ
(
xc
)−υ

.

It is straightforward to show that ξLt is strictly concave in Xt . Moreover, the function ξLt

has a unique maximum given by ∂ξLt
∂Xt

=0. Consistent with Fudenberg and Tirole (1985), such
maximum is attained at Xt = xs∗

L , where xs∗
L is the Stackelberg leader investment threshold defined

in Proposition 2. By construction, V s
Lt attains its maximum value at the first-best leader strategy
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for firm L. Hence, if we search for an Xt so that V c
Lt is to be equal or higher than V s

Lt , the minimum
value to do so is at the highest value for V s

Lt .
We thus obtain xc

L by evaluating ξLt at Xt = xs∗
L and equating ξLt to zero. The corresponding

equation that solves xc
L is given by

f

υ−1
+
[
(�LK +�MK)−

1
ε −(�LK +K)−

1
ε

]�L

δ
xs∗

M

(
xs∗

L

xs∗
M

)υ

=

[
(�LK +�MK)−

1
ε �L

xc
L

δ
−(2K)−

1
ε

xc
L

δ
−f

](
xs∗

L

xc
L

)υ

. (B7)

B.6 Proof that V s
Lt ≤V c

Lt Implies xc >xs
M

For a clustering equilibrium to occur, we require that V s
Lt ≤V c

Lt and xs
M <xc . We hereby prove

that if V s
Lt ≤V c

Lt for firm L, it also holds that xs
M <xc for firm M . The study by Pawlina and Kort

(2006) provides a similar proof and yet focuses on the Pareto optimal equilibrium of the game in
which xc =xc∗

L . Given that we predict multiple clustering equilibria in the range xc ∈ [xc
L,xc∗

L ], we
show that the aforementioned property holds for the entire range of values of xc .

For the sake of exposition, we denote a feasible clustering equilibrium threshold of the model as
xc ≡ρxc∗

L for ρ ≤1. The case of ρ =1 corresponds to the upper bound of the clustering equilibrium
thresholds and the Pareto optimal strategy xc∗

L . The lower bound of ρ corresponds to the minimum
clustering equilibrium threshold xc =xc

L. While we can infer such lower bound from (B7), this is
not necessary for the sake of exposition.

As a first step, we consider the surplus function ξLt =V s
Lt −V c

Lt and assume immediate exercise
at the leader investment threshold xs∗

L . The rationale for this assumption follows Fudenberg and
Tirole (1985). Because V s

Lt attains its maximum value at the first-best leader strategy for firm L,
we require V c∗

Lt to be equal or higher than V s
Lt at Xt =xs∗

L . In other words, we require ξLt ≤0 at
Xt =xs∗

L .
As a second step, we re-express the value of firm L under the clustering equilibrium strategy

xc ∀Xt <xc so that

V c
Lt =(2K)−

1
ε

K

δ
Xt +

f K

υ−1
[1+υ (ρ−1)]

(
Xt

xc

)υ

,

where this alternative expression of V c
Lt relies on the value-matching condition discussed in

Appendix A.
When ρ =1, the clustering strategy is the optimal strategy for firm L so that the smooth pasting

condition also holds. When ρ <1, the value-matching condition of firm L ensures that firm L

invests at a threshold xc so that its growth option value before joint investment is positive. By
construction, then, the value-matching condition for firm L ensures ρ > υ−1

υ
. We replace V c

Lt by
the expression above in ξLt .

Reordering, we obtain

1−[1+υ (ρ−1)]
(

xs∗
L

xc

)υ

+υ

⎡⎣ (�L +�M )−
1
ε �L −(�L +1)−

1
ε �L

(�L +�M )−
1
ε �M −(�L +1)−

1
ε

⎤⎦(xs∗
L

xs∗
M

)υ

≤0, (B8)

where this expression already suggests that the inequality ξLt ≤0 is affected by the ranking of the
thresholds xs∗

L , xs∗
M , and xc ≡ρxc∗

L .

As a third step, we re-express the inequality in (B8), focusing on the ratio
xs
M
xc so that

(
xs∗

M

xc

)υ

≤
υ

(�L+1)−
1
ε �L−(�L+�M )−

1
ε �L

(�L+�M )−
1
ε �M−(�L+1)−

1
ε(

xc

xs∗
L

)υ

−[1+υ (ρ−1)]
.
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Last, we argue that the right-hand side of the inequality above is strictly lower than one, so that
V s

Lt ≤V c∗
Lt implies xs

M <xc for any parameter value. In other words, we prove that

υ
(�L+1)−

1
ε �L−(�L+�M )−

1
ε �L

(�L+�M )−
1
ε �M−(�L+1)−

1
ε(

xc

xs∗
L

)υ

−[1+υ (ρ−1)]
<1.

Reordering, the expression above implies

(
xs∗

L

xc

)υ

<

⎡⎣1+υ
(�L +1)−

1
ε �L −(�L +�M )−

1
ε �L

(�L +�M )−
1
ε �M −(�L +1)−

1
ε

+υ (ρ−1)

⎤⎦−1

<1,

which is true for any parameter value given ρ ∈[ υ−1
υ

,1
]
. As a result, we conclude that V s

Lt ≤V c
Lt

implies xs∗
M <xc. Note that because xs∗

M >x̃L, it follows that if V s
Lt ≤V c

Lt also implies xc >x̃L.

B.7 Pareto-dominance Criterion to Rank Clustering Equilibria
We predict that the only Pareto optimal clustering equilibrium threshold is given by x∗c

L . To prove
this statement, we denote by V̂Lt the value of firm L given a clustering strategy so that x̂ ∈ [xc

L,x∗c
L ],

so that V̂Lt has the functional form specified in Appendix B.1 for firms playing simultaneous
investment strategies. By construction, the maximum possible value of V̂Lt obtains under the
threshold xc∗

L . Following Weeds (2002), we argue that [xc
L,x∗c

L ] forms a connected set such that
there exists a continuum of clustering equilibria in this range. We note that V̂Lt is increasing in
both Xt and x̂ ∀x̂ ∈ [xc

L,x∗c
L ]. It is straightforward to show that

∂V̂Lt

∂x̂
≥0∀x̂ ∈[xc

L,x∗c
L

]
.

The property that V̂Lt is increasing in x̂ up to xc∗
L explains why xc∗

L is the optimal investment

strategy for firm L. Similarly, ∂V̂Mt
∂x̂

is increasing in x̂, it holds that firm M attains its highest value
under the clustering equilibrium threshold xc∗

L . The Pareto optimal strategy for both firms is to
invest at xc∗

L .

B.8 Uniqueness of Cutoff Threshold 	�

Given assumption 1, we prove that there exists a unique cutoff threshold 	� ≡ (�L −�M )/2 so
that V s

Lt and V c∗
Lt intersect and are tangent to each other.

As a remark, the proof of the uniqueness of the cutoff threshold 	� does not rely explicitly on
a specific clustering threshold xc. However, the value of the cutoff threshold 	� itself depends on
the clustering equilibrium threshold xc being considered. In the body of the paper, we apply the
Pareto-dominance criterion to obtain testable implications, and we refer to the cutoff parameter
	� as the cutoff value that corresponds to the specific case in which firms invest jointly at the
Pareto optimal clustering equilibrium strategy xc∗

L .
We prove the uniqueness of the cutoff threshold 	� ≡ (�L −�M )/2 in multiple steps. First,

we evaluate the surplus function ξLt =V s
Lt −V c

Lt at Xt =xs∗
L . Second, we prove that ξLt is strictly

decreasing in �M . Consider first the proof that
∂V s

Lt
∂�M

<0. This derivative implies

∂V s
Lt

∂�M

=− 1

ε

�L

�L +�M

(�LK +�MK)−
1
ε

K

δ
(Xt )

υ
(
xs

M

)1−υ

+
[
(�LK +�MK)−

1
ε −(�LK +K)−

1
ε

]
�L

K

δ

(
Xt

xs∗
M

)υ

(1−υ)
∂xs∗

M

∂�M

,
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where the term
∂xs∗

M
∂�M

is given by

∂xs∗
M

∂�M

=−xs∗
M

[
(�L +�M )−

1
ε �M −(�L +1)−

1
ε

]−1
(�L +�M )−

1
ε

(
1− 1

ε

�M

�L +�M

)
<0.

Replacing
∂xs∗

M
∂�M

in the equation for
∂V s

Lt
∂�M

, we conclude that
∂V s

Lt
∂�M

<0.

Consider now the proof that
∂V c

Lt
∂�M

<0. The derivative
∂V c

Lt
∂�M

∀Xt <xc is given by

∂V c
Lt

∂�M

=−
[
(�L +�M )−

1
ε �L −2− 1

ε

]−1
(

Xt

xc

)υ
∂xc

∂�M

<0.

To characterize the sign of this derivative, we rely on the additional result that

∂xc

∂�M

=xc
[
(�L +�M )−

1
ε �L −2− 1

ε

]−1
(�L +�M )−

1
ε

(
1

ε

�L

�L +�M

)
>0.

Intuitively, the derivative
∂V c

Lt
∂�M

is strictly negative, because as �M increases, the market share

of firm L goes down and so does its expected value. Reordering the terms in our previous equations,
∂ξLt
∂�M

evaluated at Xt =xs∗
L is equal to

∂ξLt

∂�M

=−(�LK +�MK)−
1
ε

K

δ

(
xs∗

L

)υ (
xs∗

M

)1−υ

(
1− 1

ε

�M

�L +�M

)

(υ−1)
(�LK +�MK)−

1
ε �L −(�LK +K)−

1
ε �L

(�L +�M )−
1
ε �M −(�L +1)−

1
ε

−(�LK +�MK)−
1
ε

K

δ

(
1

ε

�L

�L +�M

)(
xs∗

L

)υ (
xs∗

M

)1−υ

+(�LK +�MK)−
1
ε

K

δ

(
1

ε

�L

�L +�M

)(
xs∗

L

)υ (xc)1−υ
.

The first term in the expression above is strictly negative, given υ >1. The net effect of the
second and third terms is strictly negative, given xs∗

M <xc .As a result, if a clustering equilibrium can
be sustained so that ξLt <0 and xs∗

M <xc , there exists a unique parameter value �M ≡�L +2	�,
at which V s

Lt is equal and tangent to V c
Lt .

Appendix C. Asset-pricing Implications

C.1 Identity for Firms’ Betas
The derivation of βjt follows from Carlson, Fisher, and Giammarino (2004). Applying Ito’s lemma
to V , we note that the exposure to systematic risk of the firm equals the proportion of the replicating
portfolio invested in the risky asset, so that β = xVx

V
. The exact expression for βjt depends on

the equilibrium outcome. In the leader-follower equilibrium, the beta of firm L or βs
Lt equals

1+(υ−1) 1
δV s

Lt
2− 1

ε K1− 1
ε >1 if Xt ≤xs

L, 1+(υ−1) 1
δV s

Lt
(1+�L)K1− 1

ε <1 if xs
L <Xt ≤xs

M, and

equals one otherwise. The beta of firm M or βs
Mt equals 1+(υ−1) 1

δV s
Mt

2− 1
ε K1− 1

ε <1 if Xt ≤xs
L,

1+(υ−1) 1
δV s

Mt
(1+�L)K1− 1

ε >1 if xs
L <Xt ≤xs

M, and equals one otherwise. In the clustering

equilibrium, βc
jt equals 1+(υ−1) 1

δV c
t

2− 1
ε K1− 1

ε if Xt ≤xc and equals one if Xt >xc .
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C.2 Intraindustry Comovement in Betas
For any investment strategy, the definition of firms’ betas in (12) implies that the covariance in
firms’ betas depends on the covariance in firms’ earnings-to-value ratios, and hence

sign[cov(βLt ,βMt )]= sign
[
cov

(
VLt − πLt

δ
,VMt − πMt

δ

)]
.

When σ� ≤	�, both firms expect an increase in value upon investment, �πc−
j t =0 and �πc+

j t =0.

This implies that, before investment, Vjt − πjt
δ

=Gjt , where Gjt is the value of the growth option
of firm j , and

cov(GLt ,GMt )=κc
L ×κc

M ×σ 2
x X2υ

t >0,

where we define κj >0 so that Gjt ≡κjX
υ
t . Hence, we conclude that cov(βLt ,βMt )>0 if Xt <xc.

Conversely, when σ� >	�, each firm expects a reduction in its profits upon the investment
of its competitor, where �πs−

Mt <0 and �πs+
Lt <0. Consider first the interval xs

L <Xt <xs
M . In this

case, firm L only expects a reduction in its profits, whereas firm M only expects an increase in its
profits upon investment. As a result, VLt − πLt

δ
=�πs+

Lt <0, while VMt − πMt
δ

=GMt . Put together,
this implies that cov(βLt ,βMt )<0 if xs

L <Xt <xs
M because

cov
(
�πs+

Lt ,GMt

)
=�s

L ×ϒs
M ×σ 2

x X2υ
t <0,

where �s
L = �πs+

Lt X
−υ
t <0. Similarly, given �πs−

Mt <0, the same argument applies to show that
cov(βLt ,βMt )<0 when Xt <xs

L.

C.3 Cross-sectional Effects
Consider the leader-follower equilibrium in which λs >0. Consider the interval Xt <xs

L. To prove
that σ s

βt >σ s∗
βt , it suffices to show that βs

Lt −βs
Mt >βs∗

Lt −βs∗
Mt . By construction, we know that

V s
Lt <V s∗

Lt if λs >0 so that βs
Lt −βs∗

Lt >0. Because xs
L <xs∗

L , the expected reduction in prices is
stronger in the leader-follower equilibrium in which λs >0 so that βs

Mt −βs∗
Mt <0. Hence, βs

Lt −
βs

Mt >βs∗
Lt −βs∗

Mt holds, because βs
Lt −βs∗

Lt >0>βs
Mt −βs∗

Mt . Consider the interval xs
L <Xt <xs∗

L .
Because βs

Mt >βs
Lt , we prove that σ s

βt >σ s∗
βt by showing that βs

Mt −βs
Lt >βs∗

Lt −βs∗
Mt . Because

βs
Mt >1 and βs

Lt <1, we know that βs
Mt −βs

Lt >0. Conversely, because βs∗
Lt >1 and βs∗

Mt <1, we
know that βs∗

Lt −βs∗
Mt >0. Hence, βs

Mt −βs
Lt >βs∗

Lt −βs∗
Mt holds, because βs

Mt −βs
Lt >0>βs∗

Lt −βs∗
Mt .

Consider the Pareto optimal clustering equilibrium. Consider the interval Xt <xs
L. To prove

that σ s
βt >σc∗

βt , it suffices to show that βs
Lt −βs

Mt >βc∗
Lt −βc∗

Mt . All else equal, given that the option
of firm L is more in the money, because xs

L <xc∗
L , it is straightforward to show that βs

Lt −βc∗
Lt >0

for any parameter value. Analogously, given that the option of firm M is less in the money, because
xs

M >xc∗
L , it is straightforward to show that βs

Mt −βc∗
Mt <0. Hence, βs

Lt −βc∗
Lt >βs

Mt −βc∗
Mt holds,

because βs
Lt −βc∗

Lt >0>βs
Mt −βc∗

Mt . Consider the interval xs
L <Xt <xs

M . In this case, it suffices
to show that βs

Mt −βs
Lt >βc∗

Lt −βc∗
Mt . A sufficient yet not necessary condition for this to happen

is βs
Mt −βs

Lt >βc∗
Lt −βc∗

Mt , which does hold in our setting, because βs
Mt >βc∗

Lt and βs
Lt <βc∗

Mt . The
corresponding lengthy derivation is omitted for brevity and is available upon request.

Appendix D. Model with Heterogeneous-installed Capacities

Consider first the sorting condition. We denote by Xt Ŷ
− 1

ε
j the expected price by firm j at time t .

In equilibrium, Xt Ŷ
− 1

ε
j is equal to the market price pt when �π−

j t =0 and �π+
j t =0; we use a more

general notation, because the sorting conditions should hold for any given investment strategy xj .
The preinvestment value function Vjt is defined for Xt <xj for any investment strategy xj and
taking as given the strategy of firm −j so that

Vjt =
(
Ŷ−

j

)− 1
ε
Kj

Xt

δ
+

[(
Ŷ +

j

)− 1
ε xj

δ
�Kj −

(
Ŷ−

j

)− 1
ε xj

δ
Kj −f Kj

](
Xt

xj

)υ

.
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Denote the market share of firm j before investment by s−
j ≡ Kj

Ŷ
−
j

, and upon investment by

s+
j ≡ �Kj

Ŷ+
j

.All else being equal, firms with more installed capacity Kj wait longer to invest, namely,

∂

∂Kj

[
∂Vjt

∂xj

]
=υ

f

xj

(
Xt

xj

)υ

+(υ−1)
1

δ

[(
Ŷ−

j

)− 1
ε

(
1− 1

ε
s−
j

)
−
(
Ŷ +

j

)− 1
ε

(
1− 1

ε
s+
j

)
�

](
Xt

xj

)υ

>0.

The sorting condition shows that the net gain from investing in capital for firm j is decreasing in
Kj . The first term shows that firms with higher Kj are subject to higher fixed costs of investment,
which gives them an incentive to delay. In the second term, the first factor is strictly positive,
because υ >1.

We solve for the equilibrium strategies of the duopoly game, as in Appendix B. The subgame-
perfect leader-follower equilibrium strategies for N =2 with KL <KM are so that xs

L <xs
M , where

the threshold of firm L xs
L is equal to

xs
L =

f (KL −λsKM ) υδ
υ−1[

(�KL +KM )−
1
ε �KL −(KL +KM )−

1
ε KL

]
−λs

[
(�KM +KL)−

1
ε �KM −(�KL +KM )−

1
ε KM

] ,

and the investment threshold of firm M equals

xs
M =

f KM
δυ

υ−1

(�KL +�KM )−
1
ε �KM −(�KL +KM )−

1
ε KM

,

where the multiplier λs ≥0 is so that (6) holds in equilibrium. The Pareto optimal clustering
equilibrium strategy for N =2 with KL <KM is so that both firms invest at the threshold

xc∗
L =

f KL
δυ

υ−1

(�KL +�KM )−
1
ε �KL −(KL +KM )−

1
ε KL

.

Consistent with our analysis in Section 1, we consider the Pareto-dominance refinement to
eliminate the alternative clustering equilibria of the game that are not Pareto optimal. We then use
(11) to determine the level of σK at which firm L is indifferent between the leader-follower and the
Pareto optimal clustering equilibria, and we define such a parameter by 	K. When σK >	K , firm
L strictly prefers to become a leader and enjoy early monopoly rents. Conversely, when σK ≤	K ,
it is Pareto optimal for both firms to invest jointly at the threshold xc∗

L .

Appendix E. Industry Dynamics and the Intraindustry Value Spread

We solve the implications of the model in terms of the intraindustry value spread in three
steps. First, we derive the sorting condition of the game in terms of firms’ marginal product of
capital. Second, we derive firms’ equilibrium investment strategies using the same approach as in
Appendix B.

E.1 Sorting Condition
We begin by re-expressing the marginal product of capital in Lemma 1 so that

qjt ≡ Vjt

Kj

(
1− 1

ε

)
− 1

ε

f

xj

(
Xt

xj

)υ

.
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We derive the sorting condition with respect to qj0 for three difference cases: one in which firms
differ only in �j , another in which firms only differ on Kj , and a third in which firms differ both in
Kj and �j . Consider first the case in which firms differ exclusively in �j . The sorting condition
with respect to �j is provided in (4) and derived in Appendix B. Furthermore, for any investment
strategy xj , the marginal product of capital qjt is a monotone, strictly increasing function of �j .
To prove this, we derive the expression for qjt above with respect to �j so that

∂qjt

∂�j

=
1

K

∂Vjt

∂�j

(
1− 1

ε

)
>0.

Put together, the sorting condition in (4) and the inequality above imply that firms with a higher
qj0 have the ability to invest earlier, namely,

∂

∂qj0

[
∂Vjt

∂xj

]
≡

∂
[

∂Vjt
∂xj

]
∂�j

∂�j

∂qj0
>0.

Consider now the case in which firms differ exclusively in Kj . We derive the expression for
qjt above with respect to Kj so that

∂qjt

∂Kj

=
1

Kj

(
1− 1

ε

)
qjt −

(
1− 1

ε

)
Vjt

K2
j

=− 1

ε

[
1

Kj

qjt +
f

xj

(
Xt

xj

)υ]
<0.

Put together, the sorting condition in (13) and the inequality above imply that firms with a higher
qj0 have the ability to invest earlier, namely,

∂

∂qj0

[
∂Vjt

∂xj

]
≡

∂
[

∂Vjt
∂xj

]
∂Kj

∂Kj

∂qj0
>0.

Lastly, consider the case in which firms differ both in their installed capacity before investment
Kj and their scale of production after investment �j . Firm type is determined by the pair

{
Kj ;cj

}
.

When firms differ in Kj and �j , the corresponding marginal sorting condition equals

∂

∂�j

[
∂Vjt

∂xj

]
+

∂

∂Kj

[
∂Vjt

∂xj

]
>0.

We redefine firm type
{
Kj ;cj

}
in terms of firms’ marginal product of capital. Given our results

above, qjt is strictly decreasing in Kj and strictly increasing in �j . Consequently, for any strategy
xj , firms with a higher qjt have the ability to invest earlier.

E.2 Investment Strategies
When firms differ in �, we derive firms’ equilibrium strategies as in Appendix B. We get the
investment threshold 	� at which firm L is indifferent between investing simultaneously or
sequentially using (11). The threshold 	q0 is given by the function σq0 when σ� equals 	�.
Because qj0 is strictly monotone in �j , we restate the equilibrium outcome derived in Appendix
B in terms of qj0. We solve for the equilibrium strategies when firms differ exclusively in Kj in
the same way. Because qj0 is strictly monotone in Kj , we can restate the equilibrium outcome
derived in Appendix D in terms of qj0.

When firms differ in both Kj and �j , firms with higher qj0 have the ability to invest earlier,
and hence the qualitative predictions of the model in Section 1 also apply here. However, with
multiple sources of heterogeneity there is no unique correspondence between (11) and 	q0. There
exist multiple combinations of the pairs of σ� and σK that yield the same σq0. In untabulated
numerical examples, we obtain a clustering equilibrium when σq0 is sufficiently low (i.e., σ� or
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σK are sufficiently low), and we obtain a leader-follower equilibrium if σq0 is sufficiently high
(i.e., σ� or σK are very high).

Appendix F. Database Construction

The working sample is drawn from a merged CRSP/Compustat database spanning 1968 to 2008.
We estimate the beta of each firm as the sum of the coefficients of monthly returns on lagged, lead,
and contemporary market returns of the stock return of each firm in the sample. We compute betas
at a monthly frequency, using five-year rolling windows containing the sixty previous observations.
We compute stock returns in excess of the risk-free rate reported in CRSP.

We estimate betas as the sum of the coefficients of monthly returns on lead, lagged, and
contemporary market returns of the stock return of each firm in the sample. We compute
betas at a monthly frequency. We follow Fama and French (1992) and match each firm’s
CRSP stock return and betas from July of year t until June of year t +1 to the corresponding
accounting information in Compustat for the fiscal year ending in year t −1. With the exception
of lnHHI, we construct the remaining explanatory variables using Compustat tapes. lnHHI is
the logarithm of the HHI for manufacturing industries reported by the U.S. Census Bureau;
lnCR4 and lnCR8 are the concentration ratios for four and eight firms reported by the
U.S. Census Bureau. Because the U.S. Census of Manufacturers is done every five years,
we repeat the HHI, CR4, and CR8 of Census year t over the next four years for every
industry.

The market value of equity is the product of item PRCC_F times CSHO. The market value of
assets V is the market value of equity plus total liabilities. The total liabilities B are computed as
AT minus CEQ minus TXDB. Operating cash flows π are the sum of SALE minus COGS minus
XSGA. Investment I ≡ (�−1)K is CAPX. We consider K to be total assets AT, with the exception
of I

K
where K is set as lagged PPENT. The operating markup m is the ratio of π over SALE. All

Compustat variables are winsorized at 1%.

We construct the intraindustry comovement in variable x at time t or ωxt as in Khanna and

Thomas (2009). For variables x =
{
β;R; V

K
; V −B

K−B
; I

K

}
, and for each month, we consider the average

of the correlation coefficients Cij between the variable x of each unrepeated pair of firms i and j

within the same industry, so that

Cij =
Cov(i,j )√

V ar(i)×V ar(j )

where Cov(i,j ) is the covariance between the variable x of firms i and j during the window
between month t and month t −60, V ar(i) is the variance of firm i’s variable x in such window,
and V ar(j ) is the variance of firm j ’s monthly variable x. To compute the comovement in the
ratios V

K
and V −B

K−B
, we compute the market value of equity at a monthly frequency, using the time

series of PRCC and CSHO reported in CRSP.

Appendix G. Parameter Choice

The parameters in Figures 1,3, and 5 are r =3.5%, δ =4%, σ =10%, f =1,K =1, and �M =2. In
Figure 1, ε=2.4 in panel A, ε=1.3 in panel B, and �L =�M +σ� ∗2 in all cases. In Figure 5, ε=2.4
and X0 =0.05 in panel A, ε=1.3 and X0 =0.15 in panel B, and �L =�M +σ� ∗2 in all cases. The
parameter choice for �L in Figure 2 and panel A of Figure 4 is �L =�M +0.53. The parameter
choice for �L in panel B of Figure 4 is �L =�M +0.3. In Figures 2 and 4, we represent firms’
expected values and betas by reporting the corresponding average of firm’s values and betas given
350 simulations of the Brownian demand shocks.
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